Pitäisikö algoritmien pelastaa meidät epävarmuudelta?

https://www.flickr.com/photos/belgapixels/2703291441/
Kuva (cc) Belgapixel @Flickr

Viimeisten vuosien aikana on puhuttu paljon algoritmien vallasta, mutta keskusteluissa esiintyy monia erilaisia näkökulmia siitä, minkälaista tuo valta oikeastaan on. Yhtäältä on keskusteltu algoritmien kyvystä rajata ja muokata ihmistoiminnan mahdollisuuksia, esimerkiksi luokittelemalla ihmisiä ja ohjaamalla tiedon kulkua [1,2,3]. Toisaalta huomiota on kiinnitetty algoritmeja koskevien käsitysten ja odotusten rooliin toiminnan ohjaamisessa [4]. Tässä kirjoituksessa pohdimme yhtä mahdollista syytä sille, miksi algoritmit ylipäätään saavat valtaa.

Michel Crozier käsittelee kirjassaan The Bureaucratic Phenomenon [5] sitä, miten byrokraattisissa organisaatioissa valtaa keskittyy henkilöille, joilla on kyky hallita organisaation toimintaan liittyvää epävarmuutta. Hän kirjoittaa esimerkiksi tehtaan koneiden huoltohenkilökunnasta ryhmänä, jolle valtaa keskittyi, koska he kykenivät vähentämään tuotantokoneisiin liittyvää epävarmuutta.

Tuotantokoneiston huoltaminen oli tehtaiden toiminnan kannalta keskeistä ja huoltohenkilökunta muodosti asiantuntijaryhmän, jolla yksin oli huoltamiseen tarvittavaa osaamista. Tämä osaaminen antoi huoltohenkilöstökunnalle strategisen etulyöntiaseman suhteessa tehtaan muihin henkilöstöryhmiin. Byrokraattisesta rakenteesta huolimatta organisaatio oli kykenemätön hallitsemaan henkilöstöryhmien epämuodollista kanssakäymistä. Tästä johtuen koneiden rikkoutumiseen liittyvän epävarmuuden hallinta loi huoltohenkilökunnalle valtaa, jota he käyttivät neuvotellessaan ryhmänsä eduista.

Crozierin analyysissa byrokraattisten organisaatioiden keskeinen pyrkimys on kontrolloida organisaation toimintaan liittyviä epävarmuuden lähteitä. Epävarmuus organisaation toiminnassa luo hallitsematonta valtaa, joka tekee byrokraattisen järjestelmän toiminnasta epätehokasta.

Yksi byrokraattisten järjestelmien toimintaan liittyvän määrällistämisen tavoitteena on etäännyttää järjestelmien toiminta subjektiivisista ihmisarvioista [6]. Sama ilmiö näkyy myös erilaisten algoritmisten sovellusten käytössä. Algoritmien toivotaan paitsi eliminoivan epävarmuuden lähteitä, myös parantavan toiminnan tehokkuutta.  Usein toiveena on, että ihmisen päätöksenteon subjektiivisuuteen tai muihin heikkouksiin liittyvät ongelmat voidaan ratkaista uusilla datapohjaiseen analytiikkaan perustuvilla teknologisilla sovelluksilla [7,8]. Tämä epävarmuuden kontrollointi näkyy tapauksissa, joissa algoritmien käyttöä perustellaan niiden systemaattisuudella tai tasalaatuisuudella, kuten esimerkiksi algoritmisen analytiikan tehokkuutta ja ennustekykyä koskevissa odotuksissa [9]. Ennustekyvyn tarkentumisen ja toiminnan tehostamisen onkin esitetty olevan nykyanalytiikkaa keskeisesti ohjaavia odotuksia [10]. Yksi käytännön esimerkki ovat itseohjautuvat autot, joiden toivotaan olevan ihmisten ohjaamia autoja turvallisempia [esim. 11]. Personalisoidun terveydenhuollon taas toivotaan tarjoavan yksilöille entistä parempia tapoja hallita terveyttään [12]. Myös esimerkiksi tekoälyn käyttö yritysten rekrytointiprosesseissa on yleistymässä. Automatisoituja rekrytointiprosesseja perustellaan vedoten tehokkuuteen ja algoritmisen arvioinnin tasalaatuisuuteen [esim. 13].

Erving Goffman on käsitellyt esseessään Where the action is? [14] kohtalokkuutta. Hän liittää käsitteen päätöksiin, jotka ovat ongelmallisia ja seuraamuksellisia. Puhtaan ongelmalliset päätökset ovat sellaisia, joissa oikea päätös ei ole selvä, mutta päätöksellä ei ole laajemman elämän kannalta juurikaan väliä. Valinta sen suhteen, mitä katsoa televisiosta, on esimerkki tällaisesta päätöksestä. Esimerkiksi päätös lähteä joka aamu töihin taas on esimerkki seuraamuksellisesta päätöksestä, jossa oikea valinta on selvä. Kotiin jäämisellä voisi olla haitallisia seurauksia, joten valinnalle lähteä töihin on selkeät perusteet. Kohtalokkaat päätökset ovat sellaisia, joissa valinnalle ei ole selkeitä perusteita, mutta sen tekemisellä on laajakantoisia seurauksia Goffmanin mukaan pyrimme järjestämään arkemme niin, että päätöksemme eivät yleensä olisi kohtalokkaita.

Sama kohtalokkuuden vähentäminen on läsnä niissä toiveissa, joita esitämme algoritmeille. Toivomme niiltä apua tilanteissa joissa oikea päätös on epäselvä. Emme kuitenkaan pysty pakenemaan kohtalokkuutta kokonaan. Päätöksillä voi aina olla ennakoimattomia seurauksia. Koska olemme aina läsnä omana, fyysisenä itsenämme, yllättävissä tilanteissa kehomme voi esimerkiksi aina vahingoittua. Kaikkeen olemiseen liittyy riskejä.

Ajatuksella kohtalokkuuden eliminoimisesta on yhtymäkohta Crozierin byrokratia-analyysiin. Byrokraattiset järjestelmät kehittyvät juuri olosuhteissa, joissa toimintaan liittyvää epävarmuutta pyritään eliminoimaan. Paradoksaalisesti juuri epävarmuuden eliminointiin käytetty menetelmä – tiukka toimintaa ohjaava formaali säännöstö – johtaa vallan keskittymiseen organisaation niihin osiin, joista epävarmuutta ei saada kitkettyä. Samaten kohtalokkuuden eliminoiminen algoritmien avulla voi johtaa vallan toimimiseen juuri niiden teknologioiden välityksellä, joilla epävarmuutta pyritään hallitsemaan. Tästä näkökulmasta yksi syy sille, että algoritmeille syntyy valtaa, on pyrkimys kontrolloida epävarmuutta, jota ei kuitenkaan täydellisesti kyetä hallitsemaan. Algoritmisissa järjestelmissä valta toimii algoritmien kautta, mutta syntyy osana laajempaa ihmistoiminnan kontekstia. Näin ollen algoritmista valtaa voitaisiinkin kenties tutkia kysymällä, minkälaisia epävarmuustekijöitä algoritmien käytöllä pyritään hallitsemaan, ja mikä mahdollisesti jää hallitsematta?

Jos joku lupaa auttaa meitä tekemään aina oikean päätöksen epävarmassa maailmassa, ei ole ihme että kuuntelemme. On kuitenkin syytä kiinnittää huomiota siihen, että samalla auttajille keskittyy valtaa.

Teksti: Jesse Haapoja & Juho Pääkkönen

– –
Kiitokset kommenteista Salla-Maaria Laaksoselle, Airi Lampiselle ja Matti Nelimarkalle. Tämä teksti kirjoitettiin osana Koneen Säätiön rahoittamaa Algoritmiset järjestelmät, valta ja vuorovaikutus -hanketta.

Eettinen tekoäly toteutuu punnituissa käytännöissä

Tekoälyä kuvataan maiden tai maanosien välisenä kilpajuoksuna, jonka ennakkosuosikkeina ovat USA ja Kiina, sekä haastajana EU. Asetelma näkyy EU-maissa tekoälystrategioina, ohjelmina ja rahoitusinstrumentteina.

Valtioneuvoston tuoreen eettistä tietopolitiikkaa koskevan selonteon mukaan Suomi tavoittelee kilpailuetua eettisesti kestävällä tekoälyn kehittämisellä ja soveltamisella. Päämääränä ovat hyödyt yhteiskunnalle ja tavallisille ihmisille, esimerkkinä maailman parhaat julkiset palvelut. Eettisyyttä tavoitellaan yhteisesti sovituilla periaatteilla, joita palveluiden kehittäjät ja ihmisiä koskevien tietoaineistojen hyödyntäjät noudattavat.

Eettisesti kestävän tekoälyn viitekehys korostaa yleisiä periaatteita kuten läpinäkyvyttä, ihmiskeskeisyyttä, ymmärrettävyyttä, syrjimättömyyttä ja ihmisarvoa – yleviä päämääriä, joiden arvoa tuskin kukaan kiistää. Periaatteita edistetään vetoamalla yritysten itsesäätelyn tarpeeseen muuttuvassa teknologiaympäristössä, jossa ajantasainen sääntely lakien tai määräysten avulla on vaikeaa.

Eettiset viitekehykset ovat erityisen tärkeitä silloin, kun sääntely tai yhteiskunnalliset oikeudenmukaisuuden normit eivät auta jäsentämään toiminnan reunaehtoja. Periaatteet rajaavat toimintatapoja, jotka ilmiselvästi rikkovat ihmisten itsemääräämisoikeutta tai tuottavat epäterveitä käytäntöjä arkeen ja työelämään. Yleisten periaatteiden ongelma voi kuitenkin piillä niiden tulkinnallisessa avoimuudessa. Se mikä on yhdelle yritykselle vastuullisuutta tai syrjimättömyyttä, ei välttämättä ole sitä toiselle.

Olemme seuranneet vuosien ajan eettisen tietopolitiikan vahvuudeksi tunnistetun MyData-ajattelun kehittymistä Suomessa ja kansainvälisesti. MyDatan, tai omadatan, perusajatuksen mukaan kansalaisten tulee saada hallita itseään koskevien tietojen käyttöä yrityksissä ja julkisella sektorilla. MyDatassa yksilöä ajatellaan digitaalisen talouden keskuksena ja datavirtojen keskipisteenä. Tavoitteena on haastaa henkilökohtaisten tietojen taloudellisen hyödyntämisen epätasa-arvoisuus siirtämällä kontrolli yrityksiltä ihmisille, joista aineistoja kerätään.

MyDatan edistäjät ovat tehokkaasti osoittaneet ihmiskeskeisyyden tarpeellisuuden datatalouden rakenteissa. Samalla ihmiskeskeisyyttä kuitenkin tulkitaan varsin joustavasti. Se voi tarkoittaa kansalaiselle tasavertaista osallistumista digitaaliseen yhteiskuntaan, yritykselle taas väylää päästä yksilön kautta käsiksi datajättien hallussa oleviin aineistoihin.

Mikä merkitsee yhdelle toimijalle kaikkien digitaalisten oikeuksien suojaamista, voi toiselle tarkoittaa mahdollisuutta tarjota maksukykyisille yksityisyyttä turvaavia palveluja. Ihmiskeskeisyydestä tulee eräänlainen musteläiskä, jossa toimijat näkevät omasta näkökulmastaan edistämisen arvoisia piirteitä.

Yleiset eettiset periaatteet eivät siis takaa tavoiteltujen yhteiskunnallisten seurausten toteutumista. Pikemminkin yleisellä tasolla pysyminen tuottaa epämääräistä puhetta ja mitäänsanottamia vastauksia. Siksi eettisiä periaatteita tulee konkretisoida ja koetella käytännössä. Jotta käytännön toimijat saavat tukea päätöksilleen, tarvitaan yksityiskohtaisia esimerkkejä palveluista, joissa eettiset periaatteet toteutuvat. Inspiraatiota eettisyyteen voi hakea myös yhteistä hyvää tuottavista digitaalisista palveluista kuten Wikipediasta, tai osuuskuntaperiaatteella toimivista yrityksistä.

Henkilökohtaisten tietojen käytön eettiset periaatteet toteutuvat, kun pääsy aineistoihin pohditaan huolellisesti ja samalla määritetään, kuka voi hyötyä aineistojen käytöstä ja miten. Keskeisiä ovat aineistojen käyttöön liittyvän päätöksenteon säännöt. Tässä ei itse asiassa ole mitään uutta. Vaikka teknologia kehittyykin nopeasti, henkilökohtaisten aineistojen käytön rajoja ja mahdollisuuksia on pohdittu vuosikymmenien ajan.

On päätettävä millaista aineistoa voi kerätä tai käyttää, mihin tarkoituksiin ja kenen toimesta, missä kulkevat hyväksyttävän ja vältettävän rajat, ja kuka niihin voi vaikuttaa ja millä aikavälillä. Vastaukset eivät kumpua yleisistä periaatteista, eivätkä ole yleispäteviä. Se mikä esimerkiksi liikenteen älypalveluissa on hyväksyttävää, voi terveyden kentällä olla eettisesti arveluttavaa.

Tämän ajan suuri haaste on digitaalisen ympäristön ohjaus ja hallinnointi. Pikemminkin kuin teknologian kehittäjien kilpajuoksusta, tässä on kysymys eri näkökulmien ja käytäntöjen huolellisesta yhteensovittamisesta. Kilpailuetua tulisi hakea eettisten tavoitteiden toteutumisesta eri alojen osaamisten risteyskohdissa. Siinä missä tekoälykisaajat näkevät maalin edessään, eettinen kestävyys löytyy pikemminkin yhdistelemällä kekseliäästi vanhaa ja uutta.

– –
Tuukka Lehtiniemi (@tlehtiniemi) & Minna Ruckenstein (@minruc).
Kirjoittajat ovat tutkijoita Helsingin yliopiston Kuluttajatutkimuskeskuksessa.

Kirjoitus on rinnakkaisjulkaistu Etiikka.fi-sivulla.