Facebook-kirppikset ja käytettyjen vaatteiden myyntisivustot muuttivat shoppailua – kuluttajia ohjaa tuotteiden laatu ja jälleenmyyntiarvo

Tiedätkö, mikä on ollut viime vuosien nopeimmin kasvava vaatekategoria? Käytetyt vaatteet. Verkossa toimivat käytettyjen vaatteiden jälleenmyyntipalvelut ja sosiaalisen median kiihdyttämä kirpputoritoiminta ovat lisänneet kuluttajien kiinnostusta myydä omia käytettyjä (ja jopa käyttämättömiä) vaatteitaan ja ostaa niitä muilta. Selvityksen mukaan käytettyjen vaatteiden markkinan kasvun taustalla ovat ennen kaikkea nuoret kuluttajat, joiden kiinnostus käytettyjen vaatteiden ostamista ja myymistä kohtaan saattaa jopa vähentää kiinnostusta ostaa vaatteita uutena.

Olemassa oleva tutkimus tarkastelee käytettyjen tuotteiden ostamista tyypillisesti joko säästämisen tai ympäristöystävällisyyden näkökulmasta. Vaikka nämä ovat tärkeitä syitä ostaa vaatteita käytettynä, halusimme selvittää, mitä muita motiiveja käytettyjen vaatteiden ostamiseen liittyy. Valitsimme tutkimuskohteeksi käytetyt luksusvaatteet ja -asusteet, joiden ostamiseen uutena liittyy erityisen paljon hedonistisia ja symbolisia motiiveja.

Haastattelimme 22 kuluttajaa, jotka ovat hiljattain ostaneet luksustuotteita toisilta kuluttajilta. Kaikki haastateltavat olivat suomalaisia 25–40-vuotiaita naisia, ja heihin oltiin yhteydessä luksusvaatteisiin ja -asusteisiin keskittyvän Facebook-kirpputorin kautta. Haastatteluaineistoa tarkasteltiin ns. ostostyylien näkökulmasta.

Tutkimuksessa huomattiin, että käytettyjen luksustuotteiden ostajia määrittää erityisesti hinta-laatutietoisuus sekä arvostus käytetyn tuotteen kaunista ikääntymistä ja sen laatua kohtaan. Laatutietoisuutta kuvailtiin esimerkiksi näin: “Brändin todellisen laadun ja käsityön näkee mielestäni vasta käytettynä hankituista käsilaukuista. Laadukkuus kestää aikaa.”

Lisäksi haastatteluaineistosta tunnistettiin uusi ostostyyli: jälleenmyyntiarvotietoisuus. Muun muassa tällaiset lausunnot kuvasivat kyseistä ostostyyliä: “Ostin tämän Chanelin huomatessani, että klassisten luksustuotteiden hinnat nousevat jatkuvasti. Myyn sen kyllä jossain vaiheessa, ja tiedän, että tulen saamaan siitä 50% enemmän mitä alun perin itse maksoin.” Nämä kuluttajat kokivat olevansa vain yksi useista omistajista tuotteen elinkaaren aikana. He uskoivat, että ostamalla joko ikonisia tai nousussa olevia brändejä he voivat saada maksamansa hinnan takaisin jälleenmyynnin yhteydessä.

Vaateteollisuuden korkean ympäristökuormittavuuden huomioon ottaen tutkimuslöydökset ovat kannustavia; Ostaessaan käytettyjä tuotteita kuluttajat kiinnittävät huomiota tuotteen laatuun, kestävyyteen ja jälleenmyyntiarvoon. Verkossa toimivat kulutustavaroiden jälleenmyyntisivustot ja -palvelut ovat keskeisessä asemassa kulutustottumusten muutoksessa. Ilman toimivia käytetyn tuotteen markkinoita kuluttajat eivät löydä itseään kiinnostavia tuotteita ja voi luottaa, että saavat omat tuotteensa myytyä eteenpäin. Alan toimijoiden tulee kiinnittää huomiota tuotteiden laadun esilletuomiseen ja oikean kuluttajasegmentin löytämiseen.

Tutkimus on julkaistu International Journal of Consumer Studies -lehden marraskuun numerossa: Linda Turunen & Essi Pöyry (2019). Shopping with the Resale Value in Mind: A Study on Second‐Hand Luxury Consumers. International Journal of Consumer Studies, 43(6), 549–556.

Riidankylvämistä ja rauhanrakentamista anonyymeissa verkkokeskusteluissa

Underwater conversations by Thomas Hawk Flickr
(cc) Thomas Hawk Flickr

Ovatko verkkokeskustelut kivettyneiden asenteiden pakkotoistoa vai tuottavatko ne uudenlaisia näkökulmia tuttuihin ilmiöihin? Suomi24-foorumin parissa tehty tutkimus paljastaa ääripäät: verkkokeskustelu on yhtä aikaa likapyykkilinko ja arjen rauhankone.

Anonyymeja verkkokeskusteluja on verrattu vessakirjoitteluun, mihin viittaa Suomi24:n vakiintunut lempinimi Suoli24. Vihan lietsonta ja holtiton huutelu on verkkokeskustelun vakiintunut piirre. Keskustelu takoo eteenpäin yhteiskuntavastaisuudella ja ihmisvihamielisyydellä. Vääränlaisia ihmisiä nimitellään ja kiusataan. ”Saan kirjoittaa juuri niin kuin ajattelen eikä tarvitse suvaitsevaisista välittää”, kertoo Suomi24:n käyttäjille suunnatun kyselyn avovastaus. Paljastukset tyydyttävät lukijoiden uteliaisuutta ja antavat tunnevoimaa omille mielipiteille ja oikeassa olemisen tunteelle.

Verkkokysely käyttäjille oli avoinna Suomi24-keskustelualueilla kahden viikon ajan joulukuussa 2016. Vastauksia kertyi lähes 1400. Kyselyssä haettiin käyttäjien näkökulmaa siihen, millaisena he näkevät foorumilla käydyn keskustelun. Verkon likapyykkilinko on lukijoille arkista viihdettä. Törkyviestejä pidetään humoristisina. Toisaalta kirjoittajien reaktioita pidetään eksoottisina tai kuriositeettina. Suomi24 on kävijöille ikään kuin lintutorni, josta bongaillaan vieraslajeja. ”Kaipaan masokistisuuteni takia välillä sitä, että voin lukea perehtymättömien tekstejä ja vajota syvään epätoivoon”, kirjoittaa yksi vastaajista. Joistakin kyselyn vastauksista huokuu ylemmyydentunne palstan kirjoittajia kohtaan, mutta toiset kuvaavat myös vilpitöntä halua ymmärtää tuntemattomia tai oppimattomia lajitovereita.

Kyselyn sadoista avovastauksista hahmottuu erilaisia keskustelukulttuureja. Nimittelyn ja leimaamisen rinnalla Suomi24-palstoilla elävät täysin vastakkaiset pyrkimykset: kirjoittajien halu paneutua toisten ongelmiin ja kannustaa aikalaisia vaikeissa elämäntilanteissa. Käyttäjäkyselyn myönteisisissä Suomi24-kokemuksissa toistuu avun saaminen. Ihmisiä askarruttavat terveyteen, ruoanlaittoon, remontteihin. raha-asioihin ja lemmikkieläimiin liittyvät kysymykset. Kyselyyn vastanneet kiittävät kirjoittajia, jotka aikaa ja vaivaa säästämättä paneutuvat käytännön pulmiin ja toisten ongelmiin. ”Monta hyvää neuvoa ja niksiä ois jäänyt saamatta”, kuvaa yksi vastaajista.

Käyttäjäkyselyn vastaukset muistuttavat verkkokeskustelun pitkästä historiasta. Ihmiset ovat hakeneet Suomi24:n palstoilta kaikupohjaa epätietoisuuden ja yksinäisyyden hetkiin jo yli viidentoista vuoden ajan. ”En ole yksin”, kirjoittaa yksi kyselyyn vastanneista. ”Chatti on saattanut pelastaa vuosien varrella ihmishenkiä”, arvelee toinen. Yksi kirjoittajista toteaa anonyymin verkkoviestinnän ansion ehkä viitaten seksuaalivähemmistöjen asemaan: ”Olisipa nuorena ollut internet noin yleensä. Kaikille asioille ei ollut nimiä 70-luvulla”.

Poliittiset vaikuttajat ja virkamiehet puhuvat usein verkkokeskusteluista etäältä – keskustelua käy ”someväki”, jota ohjaa ”someraivo”. Yhteiskunnalliseksi voimaksi tunnistettu ”somekansa” kulkee laumana keskustelunaiheesta toiseen. Suomi24-tutkimuksemme perusteella tällaista yhtenäistä joukkoa ei keskustelufoorumilta löydy. Suomi24-palstat muodostavat pikemminkin keskustelujen saariston, joka kehittyy tai kuihtuu muun maailman ja eri keskustelufoorumeiden mukana. Yli kahden tuhannen palstan joukosta löytyy riitaisia, harmonisia ja yhdentekeviä palstoja. Osa palstoista on kuollut keskustelijoiden puutteeseen.

Someraivo ja nettiviha – monine variaatioineen – ovat häiritseviä ilmiöitä, jotka rikkovat yleistä oikeustajua. Silti niihin ei pitäisi jäädä kiinni. Yksinomaan vihaan ja raivoon kiinnittynyt tarkkailija päätyy helposti toistamaan nettikeskustelujen jähmettyneitä lähtökohtia. Silloin jää näkemättä keskustelun yhteiskuntaa kannatteleva voima. Kivettyneistä ja junnaavista asetelmista pääsee eteenpäin suuntaamalla katseen verkkokeskustelujen arkisiin kuvitteluvoimiin; ihmisten loputtomaan kykyyn asettua toisten asemaan ja kannatella viesteillään arjen rauhankonetta.

Kirjoittajat: Mika Pantzar ja Minna Ruckenstein

– –

  • Harju A. (2018). Suomi24-keskustelut kohtaamisten ja törmäysten tilana. Media & viestintä, 41(1). [koko teksti]
  • Pantzar M. & Ruckenstein M. (2018) Verkkokeskustelut: Riidan kylvämistä ja rauhan rakentamista. Teoksessa Autio J., Autio M., Kylkilahti E. & Pantzar M. (toim.) (2018) Kulutus ja talous – Näkökulmia yhteiskunnan muutokseen. Helsingin yliopisto, taloustieteen osaston julkaisuja 70, s. 69-76. http://hdl.handle.net/10138/297680

Pitäisikö algoritmien pelastaa meidät epävarmuudelta?

https://www.flickr.com/photos/belgapixels/2703291441/
Kuva (cc) Belgapixel @Flickr

Viimeisten vuosien aikana on puhuttu paljon algoritmien vallasta, mutta keskusteluissa esiintyy monia erilaisia näkökulmia siitä, minkälaista tuo valta oikeastaan on. Yhtäältä on keskusteltu algoritmien kyvystä rajata ja muokata ihmistoiminnan mahdollisuuksia, esimerkiksi luokittelemalla ihmisiä ja ohjaamalla tiedon kulkua [1,2,3]. Toisaalta huomiota on kiinnitetty algoritmeja koskevien käsitysten ja odotusten rooliin toiminnan ohjaamisessa [4]. Tässä kirjoituksessa pohdimme yhtä mahdollista syytä sille, miksi algoritmit ylipäätään saavat valtaa.

Michel Crozier käsittelee kirjassaan The Bureaucratic Phenomenon [5] sitä, miten byrokraattisissa organisaatioissa valtaa keskittyy henkilöille, joilla on kyky hallita organisaation toimintaan liittyvää epävarmuutta. Hän kirjoittaa esimerkiksi tehtaan koneiden huoltohenkilökunnasta ryhmänä, jolle valtaa keskittyi, koska he kykenivät vähentämään tuotantokoneisiin liittyvää epävarmuutta.

Tuotantokoneiston huoltaminen oli tehtaiden toiminnan kannalta keskeistä ja huoltohenkilökunta muodosti asiantuntijaryhmän, jolla yksin oli huoltamiseen tarvittavaa osaamista. Tämä osaaminen antoi huoltohenkilöstökunnalle strategisen etulyöntiaseman suhteessa tehtaan muihin henkilöstöryhmiin. Byrokraattisesta rakenteesta huolimatta organisaatio oli kykenemätön hallitsemaan henkilöstöryhmien epämuodollista kanssakäymistä. Tästä johtuen koneiden rikkoutumiseen liittyvän epävarmuuden hallinta loi huoltohenkilökunnalle valtaa, jota he käyttivät neuvotellessaan ryhmänsä eduista.

Crozierin analyysissa byrokraattisten organisaatioiden keskeinen pyrkimys on kontrolloida organisaation toimintaan liittyviä epävarmuuden lähteitä. Epävarmuus organisaation toiminnassa luo hallitsematonta valtaa, joka tekee byrokraattisen järjestelmän toiminnasta epätehokasta.

Yksi byrokraattisten järjestelmien toimintaan liittyvän määrällistämisen tavoitteena on etäännyttää järjestelmien toiminta subjektiivisista ihmisarvioista [6]. Sama ilmiö näkyy myös erilaisten algoritmisten sovellusten käytössä. Algoritmien toivotaan paitsi eliminoivan epävarmuuden lähteitä, myös parantavan toiminnan tehokkuutta.  Usein toiveena on, että ihmisen päätöksenteon subjektiivisuuteen tai muihin heikkouksiin liittyvät ongelmat voidaan ratkaista uusilla datapohjaiseen analytiikkaan perustuvilla teknologisilla sovelluksilla [7,8]. Tämä epävarmuuden kontrollointi näkyy tapauksissa, joissa algoritmien käyttöä perustellaan niiden systemaattisuudella tai tasalaatuisuudella, kuten esimerkiksi algoritmisen analytiikan tehokkuutta ja ennustekykyä koskevissa odotuksissa [9]. Ennustekyvyn tarkentumisen ja toiminnan tehostamisen onkin esitetty olevan nykyanalytiikkaa keskeisesti ohjaavia odotuksia [10]. Yksi käytännön esimerkki ovat itseohjautuvat autot, joiden toivotaan olevan ihmisten ohjaamia autoja turvallisempia [esim. 11]. Personalisoidun terveydenhuollon taas toivotaan tarjoavan yksilöille entistä parempia tapoja hallita terveyttään [12]. Myös esimerkiksi tekoälyn käyttö yritysten rekrytointiprosesseissa on yleistymässä. Automatisoituja rekrytointiprosesseja perustellaan vedoten tehokkuuteen ja algoritmisen arvioinnin tasalaatuisuuteen [esim. 13].

Erving Goffman on käsitellyt esseessään Where the action is? [14] kohtalokkuutta. Hän liittää käsitteen päätöksiin, jotka ovat ongelmallisia ja seuraamuksellisia. Puhtaan ongelmalliset päätökset ovat sellaisia, joissa oikea päätös ei ole selvä, mutta päätöksellä ei ole laajemman elämän kannalta juurikaan väliä. Valinta sen suhteen, mitä katsoa televisiosta, on esimerkki tällaisesta päätöksestä. Esimerkiksi päätös lähteä joka aamu töihin taas on esimerkki seuraamuksellisesta päätöksestä, jossa oikea valinta on selvä. Kotiin jäämisellä voisi olla haitallisia seurauksia, joten valinnalle lähteä töihin on selkeät perusteet. Kohtalokkaat päätökset ovat sellaisia, joissa valinnalle ei ole selkeitä perusteita, mutta sen tekemisellä on laajakantoisia seurauksia Goffmanin mukaan pyrimme järjestämään arkemme niin, että päätöksemme eivät yleensä olisi kohtalokkaita.

Sama kohtalokkuuden vähentäminen on läsnä niissä toiveissa, joita esitämme algoritmeille. Toivomme niiltä apua tilanteissa joissa oikea päätös on epäselvä. Emme kuitenkaan pysty pakenemaan kohtalokkuutta kokonaan. Päätöksillä voi aina olla ennakoimattomia seurauksia. Koska olemme aina läsnä omana, fyysisenä itsenämme, yllättävissä tilanteissa kehomme voi esimerkiksi aina vahingoittua. Kaikkeen olemiseen liittyy riskejä.

Ajatuksella kohtalokkuuden eliminoimisesta on yhtymäkohta Crozierin byrokratia-analyysiin. Byrokraattiset järjestelmät kehittyvät juuri olosuhteissa, joissa toimintaan liittyvää epävarmuutta pyritään eliminoimaan. Paradoksaalisesti juuri epävarmuuden eliminointiin käytetty menetelmä – tiukka toimintaa ohjaava formaali säännöstö – johtaa vallan keskittymiseen organisaation niihin osiin, joista epävarmuutta ei saada kitkettyä. Samaten kohtalokkuuden eliminoiminen algoritmien avulla voi johtaa vallan toimimiseen juuri niiden teknologioiden välityksellä, joilla epävarmuutta pyritään hallitsemaan. Tästä näkökulmasta yksi syy sille, että algoritmeille syntyy valtaa, on pyrkimys kontrolloida epävarmuutta, jota ei kuitenkaan täydellisesti kyetä hallitsemaan. Algoritmisissa järjestelmissä valta toimii algoritmien kautta, mutta syntyy osana laajempaa ihmistoiminnan kontekstia. Näin ollen algoritmista valtaa voitaisiinkin kenties tutkia kysymällä, minkälaisia epävarmuustekijöitä algoritmien käytöllä pyritään hallitsemaan, ja mikä mahdollisesti jää hallitsematta?

Jos joku lupaa auttaa meitä tekemään aina oikean päätöksen epävarmassa maailmassa, ei ole ihme että kuuntelemme. On kuitenkin syytä kiinnittää huomiota siihen, että samalla auttajille keskittyy valtaa.

Teksti: Jesse Haapoja & Juho Pääkkönen

– –
Kiitokset kommenteista Salla-Maaria Laaksoselle, Airi Lampiselle ja Matti Nelimarkalle. Tämä teksti kirjoitettiin osana Koneen Säätiön rahoittamaa Algoritmiset järjestelmät, valta ja vuorovaikutus -hanketta.

Lukemisen datafikaatio ja uskottavuus

Yhä useampi arkipäiväinen toimintamme muutetaan erilaisten digitaalisten välineiden avulla dataksi, jota käytetään erilaisiin laskennallisiin toimiin kuten käyttäytymisemme ennakointiin ja sisältöjen personointiin. Tätä prosessia kutsutaan datafikaatioksi. Ihmiset luonnollisesti tulkitsevat tätä prosessia kuten ympäristöään ylipäätään. Tässä blogikirjoituksessa keskityn lukemisen datafikaatioon ja miten ihmiset sitä ymmärtävät.

Julkaisimme hiljattain Airi Lampisen kanssa artikkelin, jota varten haastattelin jo suljetun uutissuosittelujärjestelmä Scoopinionin käyttäjiä ja pääkehittäjää. Scoopinion oli Suomessa kehitetty uutissuosittelujärjestelmä, joka seurasi käyttäjien lukuaikaa eri uutisartikkeleissa. Se suositteli käyttäjille heitä tältä pohjalta mahdollisesti kiinnostavia artikkeleita. Scoopinionia voidaan siis pitää yhtenä esimerkkinä datafikaatiosta.

Uskottavuus ja data

Haastatteluissa nousi esiin uskottavuus: koska Scoopinion keskittyi lukuajan mittaamiseen eikä perinteisempään klikkipohjaiseen analytiikkaan, kokivat haastateltavat sen antamat suositukset luotettavammiksi. Tämä luotettavuus syntyi ajatuksesta, että lukuaika on pelkkää klikkausta parempi todiste siitä, että datan lähde on pitänyt artikkelia kiinnostavana. Lukuajan ajateltiin siis edustavan paremmin lukijan arviota artikkelista. Tämä tapa kehystää lukuaika oli toki myös se tapa, jolla järjestelmän kehittäjät pyrkivät palveluaan markkinoimaan.

Scoopinionin uskottavuus siis rakentui lukemiseen liitettyjen merkitysten varaan, joita kehittäjät käyttivät hyväkseen sekä järjestelmää rakentaessaan että sitä markkinoidessaan. Järjestelmää käyttäneet ihmiset tulkitsivat järjestelmän toimintaa lukemiseen liitettyjen merkitysten kautta. Järjestelmää tehtiin ymmärrettäväksi pohjaten näihin merkityksiin, kuten esimerkiksi siihen, että ihmiset ajattelevina olentoina arvioivat lukemaansa omien mieltymystensä mukaan ja viettävät enemmän aikaa itseään kiinnostavien tekstien parissa kuin sellaisten tekstien, jotka heitä eivät kiinnosta. Toisaalta palvelu myös toi uusia merkityksiä lukemiselle: kun palvelu seurasi lukemista, lukeminen muuttui implisiittiseksi suosittelemiseksi. Tämän seurauksena palvelu, jossa käyttäjillä ei ollut mahdollisuutta nähdä muita käyttäjiä koettiin kuitenkin tietyllä tapaa sosiaalisena.

Algoritmiset palvelut osana laajempaa merkitysjärjestelmää

Myös muissa algoritmisissa palveluissa ymmärrystä rakennetaan niitä edeltävien merkitysten varaan, samalla kuitenkin tuoden niihin jotain erilaista. Facebook-ystävät eivät ehkä tarkoita täsmälleen samaa kuin ihmiset jotka koemme ystäviksemme sen ulkopuolella, mutta palvelu käyttää kuitenkin hyväkseen ystävyyteen liitettyjä merkityksiä. Kun kyydityspalvelu Uber alkoi menestymään, rupesivat monet muut jakamistalouspalvelut markkinoimaan itseään tietyn asian “Uberina”: uusien palveluiden uskottavuutta menestyä rakennettiin Uberin menestyksen päälle. Nämä palvelut nojasivat tällä kehystämisellä Uberiin liitettyihin merkityksiin, joka puolestaan on idealtaan hyvin samankaltainen kuin sitä vanhemmat taksipalvelut. Tässä tapauksessa korostui Uberin lupaus tehdä vanha asia kustannustehokkaammin ja antaa “tavallisille” ihmisille mahdollisuus hyötyä taloudellisesti toiminnasta, joka oli aiemmin nähty pääosin tietyn ammattiryhmän toimialana.

Algoritmisia järjestelmiä sosiaalitieteellisestä näkökulmasta tutkittaessa tulisi huomioida, että usein niiden käyttämää dataa ja siihen liittyviä merkityksiä on hankalaa, ellei mahdotonta, erottaa itse algoritmeista, joita järjestelmät käyttävät. Usein data edustaa palveluissa ihmistä ja tästä datasta tehdään selkoa niiden käsitysten kautta, joita ihmisten toimintaan liitetään palvelun ulkopuolella.

Järjestelmät ovat ihmisten rakentamia ja niitä ruokitaan ihmisten toiminnalla. Ne ovat siis läpeensä sosiaalisia.

Artikkeli julkaistiin ihmisen ja tietokoneen välisen vuorovaikutuksen tutkimukseen keskittyvässä NordiChi-konferenssissa ja sitä tehtiin osana Koneen Säätiön rahoittamaa Algoritmiset järjestelmät, valta ja vuorovaikutus -hanketta.

Artikkelin tiedot:
Haapoja, J., & Lampinen, A. (2018). ‘Datafied’ Reading: Framing behavioral data and algorithmic news recommendations. In NordiCHI 2018: Revisiting the Life Cycle – Proceedings of the 10th Nordic Conference on Human-Computer Interaction (pp. 125-136). DOI: 10.1145/3240167.3240194

Algoritmit, ihmiset, ja vallankäyttö

Mitä algoritmit ovat ja miksi niistä pitäisi käydä yhteiskunnallista keskustelua?

Puhuin viime perjantaina meppi Liisa Jaakonsaaren järjestämässä “Älä elä kuplassa: Algoritmit ja digitaalinen sivistys EU:SSA” -seminaarissa. Saatuani kutsun tulla puhumaan algoritmeista, lupasin osallistua, kunhan puhuttaisiin myös ihmisistä ja vallankäytöstä.

Tässä muutama keskeinen ajatus esityskalvoja täydentämään:

1. Mitä algoritmit ovat?

Perinteisen teknisen määritelmän mukaan algoritmi on kuin resepti: yksityiskohtainen kuvaus tai ohje, jota seuraamalla tehtävä, prosessi tai ongelmanratkaisu suoritetaan. Tästä kelpaa esimerkiksi vaikka jakokulma. Nykyään algoritmeista puhuttaessa viitataan kuitenkin useammin oppiviin algoritmeihin ja koneoppimiseen: algoritmit oppivat ja kehittyvät käyttämänsä datan pohjalta, eivätkä lopputulokset siten ole samalla tavalla sääntömääräisiä kuin perinteinen määritelmä antaa ymmärtää.

Yhä useammin käytetään termiä algoritminen järjestelmä viittaamaan laajempaan kokonaisuuteen, joka pitää sisällään paitsi yksittäisiä koodinpätkiä, myös laajempia tietojärjestelmiä, ihmisiä, ja organisaatioita. Algoritmit eivät ole ympäristöstään irrallisia. On myös hyvä huomata, että siinä missä nyt puhutaan algoritmeista, muutama vuosi sitten puhuttiin big datasta. Paljolti on kyse samasta asiasta.

2. Algoritmeista puhuttaessa on puhuttava myös datasta

Algoritmeja tarvitaan, jotta voidaan käsitellä suuria määriä dataa, ja algoritmit tarvitsevat dataa toimiakseen ja oppiakseen. Niinpä algoritmeista puhuttaessa on puhuttava myös datasta:  Miten dataa tuotetaan & kootaan? Miten dataa luokitellaan & käytetään? Dataa tuotetaan ja kootaan yhä enemmän ja erilaisista tilanteista. Arkinen toimintamme jättää jälkiä, usein silloinkin, kun emme ajattele olevamme tekemisissä digitaalisten systeemien kanssa.

3. Kohtaamisemme algoritmien kanssa ovat arkisia, poliittisia, ja usein huomaamattomia

Google ja muut hakukoneet auttavat meitä löytämään tarvitsemaamme tietoa. Samalla ne kuitenkin määrittävät sitä, mitä näemme ja tiedämme. Ne heijastavat käyttämänsä datan vuoksi niitä ympäröivän yhteiskunnan vääristymiä, eivätkä ne toki ole itsekään neutraaleja välikäsiä. Facebookin uutisvirran kohdalla algoritmista sisällönkäsittelyä tarvitaan valikoimaan mediatulvasta kuvia ja kirjoituksia, jotka järjestelmä arvioi yksittäistä käyttäjää kiinnostaviksi. Pyrkiessään pitämään käyttäjät pauloissaan ja löytämään meitä kiinnostavia sisältöjä, Facebook voi päätyä vahvistamaan valintojamme (yhä enemmän kissavideoita kissavideoista pitäville).

Kolmantena esimerkkinä musiikkipalvelu Spotifyssakin toimintamme tuottaa dataa, joka ohjaa sitä, mitä meille tarjotaan. Emme ehkä ajattele tuottavamme dataa musiikkia kuunnellessa, mutta valintamme ovat osaltaan mukana palautekehässä, joka vahvistaa taipumuksiamme ja ohjaa sitä, millaisia uusia sisältöjä löydämme. Neljäntenä esimerkkinä tuotamme dataa myös kaupunkipyörällä ajellessa ja monissa muissa tilanteissa, joita emme ehkä tunnista digitaaliseksi vuorovaikutukseksi. Tuottamallamme datalla voi olla poliittisia seurauksia, kun sitä käytetään järjestelmien kehittämiseen. Jos vaikkapa kaupunkipyöräjärjestelmää kehitetään datavetoisesti, saatetaan päätyä vahvistamaan palvelua siellä, missä sitä on jo helppo käyttää, sen sijaan, että suunnattaisiin voimavarat sinne, missä tarve on suurin. Kenen ääni kuuluu ja huomaammeko tekevämme jotain poliittista silloin, kun arkisen toimintamme oheistuotteena syntyy dataa?

4. Teknologiaa on helpompi muuttaa kuin kulttuuria.

Kun puhutaan algoritmeista, ollaan usein huolissaan niiden vallasta ja vääristymistä, joita ne tuottavat. Yhteiskunnan vääristymät ja virheet löytävät kuitenkin tiensä myös digitaalisiin järjestelmiin. Esimerkiksi algoritmisten järjestelmien näkyväksi tekemä syrjintä on monesti lähtöisin datasta, jota järjestelmät käyttävät ja joka heijastaa yhteiskunnan historiallisia tai vallitsevia vinoutumia. Järjestelmiä voidaan muuttaa, jotta ne eivät vahvistaisi tai ylläpitäisi syrjintää, mutta syrjinnän kitkemiseksi on muutettava yhteiskuntaa laajemmin.

5. Algoritmiset järjestelmät muistuttavat byrokratiaa.

Tämänhetkisen algoritmikohinan keskellä on hyvä miettiä, mikä näissä järjestelmissä on oikeastaan uutta. Joiltain osin algoritmit muistuttavat byrokratiaa. On siis puhuttava siitä, miten algoritmit ja ihmiset toimivat yhdessä ja millaista valtaa toimintaan kulloinkin liittyy. Uhkana on, että puhumalla algoritmien vallasta vältytään puhumasta algoritmeista vallankäytön välineenä.

Lue lisää:

Bitit ja politiikka: Tervetuloa, laskennallinen politiikan tutkimus

https://www.flickr.com/photos/videocrab/4630988238/
(cc) Kevin Simpson @Flickr

Teksti on julkaistu 8.8. ilmestyneessä Politiikka-lehden numerossa 2/2018 “Bitit ja politiikka” -minisymposiumin johdantona.

Tietoyhteiskuntakehitys ja teknologian muutokset ovat vaikuttaneet yhteiskuntatieteisiin, mukaan lukien politiikan tutkimukseen. Digitaalisissa toimintaympäristöissä tapahtuva poliittinen toiminta näyttäytyy houkuttelevana tutkimuskohteena ja toisaalta esimerkiksi digitaalisten alustojen ja algoritmien tutkimus nostaa esille politiikan perimmäisiä kysymyksiä vallasta (esim. Gillespie 2010; Beer 2017; Neyland ja Möllers 2016). Monet kiinnostavista kysymyksistä kytkeytyvät poliittiseen viestintään: sosiaalinen media on jo haastanut perinteisiä viestinnän portinvartijateorioita (esim. Chadwick 2014, Castells 2007) ja uudet digitaaliset viestintävälineet muuttavat kansalaisosallistumisen tapoja (esim. Bennett ja Segerberg 2013; Juris 2012). Myös marxilainen pohdinta on tehnyt paluun alustatalouden myötä tapahtuneen pääoman jakautumisen seurauksena (esim. Spencer 2018). Jo tämä  tutkimusnäkökulmien lyhyt lista osoittaa, että politiikan tutkimusperinteet ovat tärkeässä roolissa myös nykyisen digitaalisen yhteiskunnan aikana.

Digitaalisuus ei muuta vain tutkimuskohteita, vaan myös aineistoja ja menetelmiä. Digitaaliset jalanjäljet (digital trace data) ja massadata (big data) mahdollistavat uudenlaisten kysymysten esittämisen: aiemmin tutkijoilla ei ollut käytettävissä samankaltaisia yksityiskohtaisia ja laajoja aineistoja ihmisten, organisaatioiden ja liikkeiden toiminnasta, vaan tutkimuksessa on turvauduttu havainnointiin, haastatteluihin, kyselyaineistoihin ja rekisteriaineistoihin. Lazerin ja kumppaneiden (2009) mukaan uudet digitaaliset aineistot ja niitä hyödyntävät laskennalliset menetelmät ovat kuin uusi mikroskooppi yhteiskuntatieteelliseen tutkimukseen. Sekä Rob Kitchin (2014) että danah boyd ja Kate Crawford (2012) kehottavat tutkijoita kuitenkin kriittisesti arvioimaan niitä tapoja, joilla tutkimusta tehdään massadatan aikana ja sitä, kuinka laskennalliset menetelmät muokkaavat yhteiskuntatieteellistä tutkimusta. Hyvä esimerkki peräänkuulutetusta kriittisyydestä on Grimmerin ja Stewartin (2013) artikkeli, jossa he perinteisiin laadullisiin lähestymistapohin verraten pohtivat, miten tekstianalyysiä voidaan toteuttaa esimerkiksi sanojen esiintymisfrekvenssejä tarkastelemalla.

Uusien menetelmien ja aineistojen myötä myös muut tieteenalat ovat innostuneet tarkastelemaan yhteiskuntatieteellisiä kysymyksiä. Justin Grimmerin (2015) mukaan laskennallisten menetelmien avulla yhteiskuntatieteellisiä kysymyksiä käsittelevät yhteiskuntatieteilijöiden lisäksi myös datatietelijät, tietojenkäsittelytietelijät ja fyysikot, usein monitieteisissä ryhmissä. Poikkitieteellinen lähestymistapa helposti tukee tietynlaisia institutionalisoituneita politiikan tutkimuksen muotoja. Se voi aiheuttaa esimerkiksi behavioralistisen politiikan tutkimuksen paluun, koska perspektiivin ajatus teoriapohjaisesta mallintamisesta on yhteensopiva perinteisten laskennallisten tieteen osaajien kanssa — eivätkä he tunne behavioralistista politiikan tutkimusta kohtaan esitettyä ansiokasta kritiikkiä. Toisaalta yhteiskuntatieteilijöiden perinteinen koulutus ei ole sisältänyt opetusta laskennallisista menetelmistä ja niiden käytöstä. Siksi yhteiskuntatieteellisen koulutuksen ulkopuolelta on helppo tarjota näkökantoja ja lähestymistapoja yhteiskuntatieteellisten kysymysten käsittelyyn, vaikka ne yhteiskuntatieteellisin silmin voivat näyttää naiiveilta. Hanna Wallach (2018) muistuttaakin tietojenkäsittelytieteilijöille, että yhteiskuntatiedettä ei synny automaattisesti käyttämällä yhteiskuntatieteellistä aineistoa. Vastaavasti Grimmer (2015) argumentoi, että jos haluamme luoda yhteiskuntatieteellisemmän lähestymistavan laskennalliseen yhteiskuntatieteeseen, on välttämätöntä että yhteiskuntatieteilijät ovat mukana tekemässä ja kehittämässä laskennallisten menetelmien käyttöä.

Tämän symposiumin artikkelit ovat esimerkkejä tällaisesta yhteistyöstä ja menetelmäkehityksestä. Symposium koostuu kolmesta toisiaan täydentävästä tekstistä. Kaksi ensimmäistä esittelevät laskennallisten menetelmien käyttöä politiikan tutkimuksen kentällä, kolmas pohtii laskennallisten menetelmien institutionalisoitumista suomalaiseen politiikan tutkimukseen. Tekstit siis omalta osaltaan vastaavat Grimmerin (2015) ehdotukseen pyrkiä muodostamaan selkeämmin yhteiskuntatieteellisesti painottunut näkökulma laskennallisten menetelmien käyttöön ja kehitykseen.

Salla-Maaria Laaksosen ja Matti Nelimarkan artikkeli tutkii digitaalista vaalijulkisuutta vuoden 2015 eduskuntavaaleissa. Tutkimuksessa laskennallisesti analysoidaan vaalien julkisella agendalla olleet teemat ja yhdistetään saatua tietoa toisaalta poliittisen viestinnän agendatutkimuksen teorioihin ja puolueiden aiheomistajuuden analyysiin. Tuukka Ylä-Anttila, Veikko Eranti ja Anna Kukkonen taas käsittelevät katsauksessaan ilmastonmuutoksesta käytyä julkista keskustelua aihemallinnuksen avulla. Kirjoittajat käyvät läpi menetelmän reunaehtoja ja ehdottavat laadullista validointiprosessia, jonka avulla menetelmää voisi käyttää tekstien kehysanalyysina.

Molemmat tekstit tarkastelevat agendan muodostumista laskennallisesti ja osoittavat samalla, että laskennalliset menetelmät voivat tarjota uusia työkaluja poliittisten argumenttien tutkimiseen ja sellaisiin politiikan ja poliittisen viestinnän polttaviin klassisiin kysymyksiin kuten agendan rakentaminen ja teemojen kehystäminen. Ennen kaikkea menetelmät mahdollistavat tällaisen analyysin tekemisen paljon aiempaa laajemmilla aineistoilla. Molemmat tekstit käyttävät menetelmänä ohjaamatonta koneoppimista, tarkemmin aihemallinnusta, mutta sitovat valitun menetelmän perinteiseen yhteiskuntatieteelliseen kysymyksenasetteluun. Lisäksi tekstit käyvät keskustelua laskennallisia menetelmiä soveltavan yhteiskuntatieteen käsitteiden kanssa — nähdäksemme tämä ei ole vain tarpeellinen, vaan myös välttämätön keskustelu.

Professori Pertti Ahonen luo katsauksessaan näkymän laskennallisten menetelmien institutionalisoitumiseen politiikan tutkimuksessa. Hän keskittyy nimenomaisesti laskennallisiin menetelmiin, joita on kehitetty politiikan tutkimuksen institutionalisoituneiden kysymysten tarkasteluun politiikan tutkijoiden toimesta. Ahonen päätyy toteamaan, että laskennallisten menetelmien käyttö politiikan tutkimuksessa on yhä sivupolku, ja varsinkin suomalaisessa politiikan tutkimuksessa melko vähäistä. Ahonen myös aiheellisesti peräänkuuluttaa syvällisempää keskustelua menetelmien filosofisista taustaoletuksista.

Menetelmäkeskustelua onkin yhä syytä käydä, ja sitä tulisi käydä poikkitieteellisesti. Poikkitieteellisyyden haasteeseen on herätty myös tietojenkäsittelytieteilijöiden joukossa (vrt. Wallach, 2018). Oleellista on, että vaikka laskennallisia menetelmiä voi usein soveltaa suoraan “out of the box”, ne eivät ole taikalaatikoita, jotka ratkaisevat aiemmat tutkimukseen liittyvät ongelmat ja luotettavuuskysymykset; laadullista tarkastelua ja teorialähtöisyyttä tarvitaan yhä rinnalle. Robotti ei vie politiikan tutkijan töitä, kuten Tuukka Ylä-Anttila ja kumppanit toteavat analyysinsa päätteeksi – eikä ehkä datatieteilijäkään.

Matti Nelimarkka & Salla-Maaria Laaksonen
Nelimarkka on tutkijatohtori Tietotekniikan laitoksella ja Tietotekniikan tutkimuslaitos HIIT:llä Aalto-yliopistossa ja opettaja Menetelmäkeskuksessa (Valtiotieteellinen tiedekunta, Helsingin yliopisto). Laaksonen on tutkijatohtori Kuluttajatutkimuskeskuksessa (Valtiotieteellinen tiedekunta, Helsingin yliopisto)
Lähteet

  • Beer, David. 2017. The social power of algorithms. Information, Communication & Society 20:1, 1–13.
  • Bennett, Lance ja Segerberg Alexandra. 2013. The Logic of Connective Action : Digital Media and the Personalization of Contentious Politics. Cambridge: Cambridge University Press.
  • boyd, danah ja Crawford, Kate. 2012. Critical Questions for Big Data. Information, Communication & Society 15:5, 662–679.
  • Castells, Manuel. 2007. Communication, Power and Counter-Power in the Network Society. International Journal of Communication 1:29, 238-266.
  • Chadwick, Andrew. 2013. The Hybrid Media System: Politics and Power. Oxford: Oxford University Press.
  • Gillespie, Tarleton. 2010. The politics of “platforms.” New Media and Society 12:3, 347–364.
  • Grimmer, Justin. 2015. We Are All Social Scientists Now: How Big Data, Machine Learning, and Causal Inference Work Together. PS: Political Science & Politics 48:01, 80–83.
  • Grimmer, Justin ja Stewart, Brandon M. 2013. Text as Data: The Promise and Pitfalls of Automatic Content Analysis Methods for Political Texts. Political Analysis 21:3, 267–297.
  • Juris, Jeffrey. 2012. Reflections on #Occupy Everywhere: Social Media, Public Space, and Emerging Logics of Aggregation. American Ethnologist 39:2, 259–79.
  • Kitchin, Rob. 2014. Big Data, new epistemologies and paradigm shifts. Big Data & Society 1:1, 1–12.
  • Lazer, David, Pentland Alex, Adamic Lada, ym. 2009. Life in the network: the coming age of computational social science. Science 323:5915, 721–723.
  • Neyland, Daniel ja Möllers, Norma. 2016. Algorithmic IF … THEN rules and the conditions and consequences of power. Information, Communication & Society 4462, 1–18.
  • Spencer, David. 2018. Fear and hope in an age of mass automation: debating the future of work. New Technology, Work and Employment 33:1, 1–12.
  • Wallach, Hanna. 2018. Computational social science ≠ computer science + social data. Communications of the ACM 61:3, 42–44.