
Viimeisten vuosien aikana on puhuttu paljon algoritmien vallasta, mutta keskusteluissa esiintyy monia erilaisia näkökulmia siitä, minkälaista tuo valta oikeastaan on. Yhtäältä on keskusteltu algoritmien kyvystä rajata ja muokata ihmistoiminnan mahdollisuuksia, esimerkiksi luokittelemalla ihmisiä ja ohjaamalla tiedon kulkua [1,2,3]. Toisaalta huomiota on kiinnitetty algoritmeja koskevien käsitysten ja odotusten rooliin toiminnan ohjaamisessa [4]. Tässä kirjoituksessa pohdimme yhtä mahdollista syytä sille, miksi algoritmit ylipäätään saavat valtaa.
Michel Crozier käsittelee kirjassaan The Bureaucratic Phenomenon [5] sitä, miten byrokraattisissa organisaatioissa valtaa keskittyy henkilöille, joilla on kyky hallita organisaation toimintaan liittyvää epävarmuutta. Hän kirjoittaa esimerkiksi tehtaan koneiden huoltohenkilökunnasta ryhmänä, jolle valtaa keskittyi, koska he kykenivät vähentämään tuotantokoneisiin liittyvää epävarmuutta.
Tuotantokoneiston huoltaminen oli tehtaiden toiminnan kannalta keskeistä ja huoltohenkilökunta muodosti asiantuntijaryhmän, jolla yksin oli huoltamiseen tarvittavaa osaamista. Tämä osaaminen antoi huoltohenkilöstökunnalle strategisen etulyöntiaseman suhteessa tehtaan muihin henkilöstöryhmiin. Byrokraattisesta rakenteesta huolimatta organisaatio oli kykenemätön hallitsemaan henkilöstöryhmien epämuodollista kanssakäymistä. Tästä johtuen koneiden rikkoutumiseen liittyvän epävarmuuden hallinta loi huoltohenkilökunnalle valtaa, jota he käyttivät neuvotellessaan ryhmänsä eduista.
Crozierin analyysissa byrokraattisten organisaatioiden keskeinen pyrkimys on kontrolloida organisaation toimintaan liittyviä epävarmuuden lähteitä. Epävarmuus organisaation toiminnassa luo hallitsematonta valtaa, joka tekee byrokraattisen järjestelmän toiminnasta epätehokasta.
Yksi byrokraattisten järjestelmien toimintaan liittyvän määrällistämisen tavoitteena on etäännyttää järjestelmien toiminta subjektiivisista ihmisarvioista [6]. Sama ilmiö näkyy myös erilaisten algoritmisten sovellusten käytössä. Algoritmien toivotaan paitsi eliminoivan epävarmuuden lähteitä, myös parantavan toiminnan tehokkuutta. Usein toiveena on, että ihmisen päätöksenteon subjektiivisuuteen tai muihin heikkouksiin liittyvät ongelmat voidaan ratkaista uusilla datapohjaiseen analytiikkaan perustuvilla teknologisilla sovelluksilla [7,8]. Tämä epävarmuuden kontrollointi näkyy tapauksissa, joissa algoritmien käyttöä perustellaan niiden systemaattisuudella tai tasalaatuisuudella, kuten esimerkiksi algoritmisen analytiikan tehokkuutta ja ennustekykyä koskevissa odotuksissa [9]. Ennustekyvyn tarkentumisen ja toiminnan tehostamisen onkin esitetty olevan nykyanalytiikkaa keskeisesti ohjaavia odotuksia [10]. Yksi käytännön esimerkki ovat itseohjautuvat autot, joiden toivotaan olevan ihmisten ohjaamia autoja turvallisempia [esim. 11]. Personalisoidun terveydenhuollon taas toivotaan tarjoavan yksilöille entistä parempia tapoja hallita terveyttään [12]. Myös esimerkiksi tekoälyn käyttö yritysten rekrytointiprosesseissa on yleistymässä. Automatisoituja rekrytointiprosesseja perustellaan vedoten tehokkuuteen ja algoritmisen arvioinnin tasalaatuisuuteen [esim. 13].
Erving Goffman on käsitellyt esseessään Where the action is? [14] kohtalokkuutta. Hän liittää käsitteen päätöksiin, jotka ovat ongelmallisia ja seuraamuksellisia. Puhtaan ongelmalliset päätökset ovat sellaisia, joissa oikea päätös ei ole selvä, mutta päätöksellä ei ole laajemman elämän kannalta juurikaan väliä. Valinta sen suhteen, mitä katsoa televisiosta, on esimerkki tällaisesta päätöksestä. Esimerkiksi päätös lähteä joka aamu töihin taas on esimerkki seuraamuksellisesta päätöksestä, jossa oikea valinta on selvä. Kotiin jäämisellä voisi olla haitallisia seurauksia, joten valinnalle lähteä töihin on selkeät perusteet. Kohtalokkaat päätökset ovat sellaisia, joissa valinnalle ei ole selkeitä perusteita, mutta sen tekemisellä on laajakantoisia seurauksia Goffmanin mukaan pyrimme järjestämään arkemme niin, että päätöksemme eivät yleensä olisi kohtalokkaita.
Sama kohtalokkuuden vähentäminen on läsnä niissä toiveissa, joita esitämme algoritmeille. Toivomme niiltä apua tilanteissa joissa oikea päätös on epäselvä. Emme kuitenkaan pysty pakenemaan kohtalokkuutta kokonaan. Päätöksillä voi aina olla ennakoimattomia seurauksia. Koska olemme aina läsnä omana, fyysisenä itsenämme, yllättävissä tilanteissa kehomme voi esimerkiksi aina vahingoittua. Kaikkeen olemiseen liittyy riskejä.
Ajatuksella kohtalokkuuden eliminoimisesta on yhtymäkohta Crozierin byrokratia-analyysiin. Byrokraattiset järjestelmät kehittyvät juuri olosuhteissa, joissa toimintaan liittyvää epävarmuutta pyritään eliminoimaan. Paradoksaalisesti juuri epävarmuuden eliminointiin käytetty menetelmä – tiukka toimintaa ohjaava formaali säännöstö – johtaa vallan keskittymiseen organisaation niihin osiin, joista epävarmuutta ei saada kitkettyä. Samaten kohtalokkuuden eliminoiminen algoritmien avulla voi johtaa vallan toimimiseen juuri niiden teknologioiden välityksellä, joilla epävarmuutta pyritään hallitsemaan. Tästä näkökulmasta yksi syy sille, että algoritmeille syntyy valtaa, on pyrkimys kontrolloida epävarmuutta, jota ei kuitenkaan täydellisesti kyetä hallitsemaan. Algoritmisissa järjestelmissä valta toimii algoritmien kautta, mutta syntyy osana laajempaa ihmistoiminnan kontekstia. Näin ollen algoritmista valtaa voitaisiinkin kenties tutkia kysymällä, minkälaisia epävarmuustekijöitä algoritmien käytöllä pyritään hallitsemaan, ja mikä mahdollisesti jää hallitsematta?
Jos joku lupaa auttaa meitä tekemään aina oikean päätöksen epävarmassa maailmassa, ei ole ihme että kuuntelemme. On kuitenkin syytä kiinnittää huomiota siihen, että samalla auttajille keskittyy valtaa.
Teksti: Jesse Haapoja & Juho Pääkkönen
– –
Kiitokset kommenteista Salla-Maaria Laaksoselle, Airi Lampiselle ja Matti Nelimarkalle. Tämä teksti kirjoitettiin osana Koneen Säätiön rahoittamaa Algoritmiset järjestelmät, valta ja vuorovaikutus -hanketta.
- [1] Ananny, M. (2016). Towards an ethics of algorithms: Convening, observation, probability, and timeliness. Science, Technology & Human Values 41(1).
- [2] Gillespie, T. (2014). The relevance of algorithms. Media technologies: Essays on communication, materiality, and society,
- [3] Willson, M. (2017). Algorithms (and the) everyday. Information, Communication & Society 20(1).
- [4] Beer, D. (2017). The social power of algorithms. Information, Communication & Society 20(1).
- [5] Crozier, M (1964). The Bureaucratic Phenomenon. Chicago: University of Chicago Press.
- [6] Porter, T. (1995). Trust in numbers. Princeton University Press.
- [7] boyd, d. & Crawford, K. (2012). Critical questions for big data. Information, Communication & Society 15(5).
- [8] O’Neill, C. (2016). Weapons of math destruction. Crown Books.
- [9] Beer, D. (2017). The data analytics industry and the promises of real-time knowing: perpetuating and deploying a rationality of speed. Journal of Cultural Economy 10(1).
- [10] Beer, D. (2018). Envisioning the power of data analytics. Information, Communication & Society 21(3).
- [11] http://www.europarl.europa.eu/news/en/headlines/economy/20190110STO23102/self-driving-cars-in-the-eu-from-science-fiction-to-reality http://www.europarl.europa.eu/news/en/headlines/economy/20190110STO23102/self-driving-cars-in-the-eu-from-science-fiction-to-reality
- [12] Ruckenstein, M. & Schüll, N. D. (2017). The datafication of health. Annual Review of Anthropology 46.
- [13] https://www.forbes.com/sites/valleyvoices/2018/01/29/how-ai-is-changing-the-game-for-recruiting/#1b2aab571aa2 https://www.forbes.com/sites/valleyvoices/2018/01/29/how-ai-is-changing-the-game-for-recruiting
- [14] Goffman, E. (1967). Interaction ritual. New York, NY: Doubleday