Pitäisikö algoritmien pelastaa meidät epävarmuudelta?

https://www.flickr.com/photos/belgapixels/2703291441/
Kuva (cc) Belgapixel @Flickr

Viimeisten vuosien aikana on puhuttu paljon algoritmien vallasta, mutta keskusteluissa esiintyy monia erilaisia näkökulmia siitä, minkälaista tuo valta oikeastaan on. Yhtäältä on keskusteltu algoritmien kyvystä rajata ja muokata ihmistoiminnan mahdollisuuksia, esimerkiksi luokittelemalla ihmisiä ja ohjaamalla tiedon kulkua [1,2,3]. Toisaalta huomiota on kiinnitetty algoritmeja koskevien käsitysten ja odotusten rooliin toiminnan ohjaamisessa [4]. Tässä kirjoituksessa pohdimme yhtä mahdollista syytä sille, miksi algoritmit ylipäätään saavat valtaa.

Michel Crozier käsittelee kirjassaan The Bureaucratic Phenomenon [5] sitä, miten byrokraattisissa organisaatioissa valtaa keskittyy henkilöille, joilla on kyky hallita organisaation toimintaan liittyvää epävarmuutta. Hän kirjoittaa esimerkiksi tehtaan koneiden huoltohenkilökunnasta ryhmänä, jolle valtaa keskittyi, koska he kykenivät vähentämään tuotantokoneisiin liittyvää epävarmuutta.

Tuotantokoneiston huoltaminen oli tehtaiden toiminnan kannalta keskeistä ja huoltohenkilökunta muodosti asiantuntijaryhmän, jolla yksin oli huoltamiseen tarvittavaa osaamista. Tämä osaaminen antoi huoltohenkilöstökunnalle strategisen etulyöntiaseman suhteessa tehtaan muihin henkilöstöryhmiin. Byrokraattisesta rakenteesta huolimatta organisaatio oli kykenemätön hallitsemaan henkilöstöryhmien epämuodollista kanssakäymistä. Tästä johtuen koneiden rikkoutumiseen liittyvän epävarmuuden hallinta loi huoltohenkilökunnalle valtaa, jota he käyttivät neuvotellessaan ryhmänsä eduista.

Crozierin analyysissa byrokraattisten organisaatioiden keskeinen pyrkimys on kontrolloida organisaation toimintaan liittyviä epävarmuuden lähteitä. Epävarmuus organisaation toiminnassa luo hallitsematonta valtaa, joka tekee byrokraattisen järjestelmän toiminnasta epätehokasta.

Yksi byrokraattisten järjestelmien toimintaan liittyvän määrällistämisen tavoitteena on etäännyttää järjestelmien toiminta subjektiivisista ihmisarvioista [6]. Sama ilmiö näkyy myös erilaisten algoritmisten sovellusten käytössä. Algoritmien toivotaan paitsi eliminoivan epävarmuuden lähteitä, myös parantavan toiminnan tehokkuutta.  Usein toiveena on, että ihmisen päätöksenteon subjektiivisuuteen tai muihin heikkouksiin liittyvät ongelmat voidaan ratkaista uusilla datapohjaiseen analytiikkaan perustuvilla teknologisilla sovelluksilla [7,8]. Tämä epävarmuuden kontrollointi näkyy tapauksissa, joissa algoritmien käyttöä perustellaan niiden systemaattisuudella tai tasalaatuisuudella, kuten esimerkiksi algoritmisen analytiikan tehokkuutta ja ennustekykyä koskevissa odotuksissa [9]. Ennustekyvyn tarkentumisen ja toiminnan tehostamisen onkin esitetty olevan nykyanalytiikkaa keskeisesti ohjaavia odotuksia [10]. Yksi käytännön esimerkki ovat itseohjautuvat autot, joiden toivotaan olevan ihmisten ohjaamia autoja turvallisempia [esim. 11]. Personalisoidun terveydenhuollon taas toivotaan tarjoavan yksilöille entistä parempia tapoja hallita terveyttään [12]. Myös esimerkiksi tekoälyn käyttö yritysten rekrytointiprosesseissa on yleistymässä. Automatisoituja rekrytointiprosesseja perustellaan vedoten tehokkuuteen ja algoritmisen arvioinnin tasalaatuisuuteen [esim. 13].

Erving Goffman on käsitellyt esseessään Where the action is? [14] kohtalokkuutta. Hän liittää käsitteen päätöksiin, jotka ovat ongelmallisia ja seuraamuksellisia. Puhtaan ongelmalliset päätökset ovat sellaisia, joissa oikea päätös ei ole selvä, mutta päätöksellä ei ole laajemman elämän kannalta juurikaan väliä. Valinta sen suhteen, mitä katsoa televisiosta, on esimerkki tällaisesta päätöksestä. Esimerkiksi päätös lähteä joka aamu töihin taas on esimerkki seuraamuksellisesta päätöksestä, jossa oikea valinta on selvä. Kotiin jäämisellä voisi olla haitallisia seurauksia, joten valinnalle lähteä töihin on selkeät perusteet. Kohtalokkaat päätökset ovat sellaisia, joissa valinnalle ei ole selkeitä perusteita, mutta sen tekemisellä on laajakantoisia seurauksia Goffmanin mukaan pyrimme järjestämään arkemme niin, että päätöksemme eivät yleensä olisi kohtalokkaita.

Sama kohtalokkuuden vähentäminen on läsnä niissä toiveissa, joita esitämme algoritmeille. Toivomme niiltä apua tilanteissa joissa oikea päätös on epäselvä. Emme kuitenkaan pysty pakenemaan kohtalokkuutta kokonaan. Päätöksillä voi aina olla ennakoimattomia seurauksia. Koska olemme aina läsnä omana, fyysisenä itsenämme, yllättävissä tilanteissa kehomme voi esimerkiksi aina vahingoittua. Kaikkeen olemiseen liittyy riskejä.

Ajatuksella kohtalokkuuden eliminoimisesta on yhtymäkohta Crozierin byrokratia-analyysiin. Byrokraattiset järjestelmät kehittyvät juuri olosuhteissa, joissa toimintaan liittyvää epävarmuutta pyritään eliminoimaan. Paradoksaalisesti juuri epävarmuuden eliminointiin käytetty menetelmä – tiukka toimintaa ohjaava formaali säännöstö – johtaa vallan keskittymiseen organisaation niihin osiin, joista epävarmuutta ei saada kitkettyä. Samaten kohtalokkuuden eliminoiminen algoritmien avulla voi johtaa vallan toimimiseen juuri niiden teknologioiden välityksellä, joilla epävarmuutta pyritään hallitsemaan. Tästä näkökulmasta yksi syy sille, että algoritmeille syntyy valtaa, on pyrkimys kontrolloida epävarmuutta, jota ei kuitenkaan täydellisesti kyetä hallitsemaan. Algoritmisissa järjestelmissä valta toimii algoritmien kautta, mutta syntyy osana laajempaa ihmistoiminnan kontekstia. Näin ollen algoritmista valtaa voitaisiinkin kenties tutkia kysymällä, minkälaisia epävarmuustekijöitä algoritmien käytöllä pyritään hallitsemaan, ja mikä mahdollisesti jää hallitsematta?

Jos joku lupaa auttaa meitä tekemään aina oikean päätöksen epävarmassa maailmassa, ei ole ihme että kuuntelemme. On kuitenkin syytä kiinnittää huomiota siihen, että samalla auttajille keskittyy valtaa.

Teksti: Jesse Haapoja & Juho Pääkkönen

– –
Kiitokset kommenteista Salla-Maaria Laaksoselle, Airi Lampiselle ja Matti Nelimarkalle. Tämä teksti kirjoitettiin osana Koneen Säätiön rahoittamaa Algoritmiset järjestelmät, valta ja vuorovaikutus -hanketta.

Neljä ajatusta yhteiskuntatieteilijän digitaidoista

https://www.flickr.com/photos/llimllib/3126788515/
(cc) Bill Mill @Flickr

Yhteiskuntatieteilijöitä tarvitaan rakentamaan digitaalista yhteiskuntaa, mutta mitä taitoja tarvitsemme siihen? Entä yksilöinä toimimiseen mm. muuttuvassa työelämässä? Mitä yhteiskuntatieteilijöiden digitaaliset taidot ylipäätään ovat, ja koskevatko ne meitä kaikkia? Kokoonnuimme yhdessä Rajapinnan ja Yhteiskunta-alan korkeakoulutetut ry:n kanssa ystävänpäivänä pohtimaan näitä kysymyksiä. Tässä blogikirjoituksessa koottuna tilaisuuden alustajien pääviestit.

Jarno M. Koponen, Yleisradio: ”Digitalouden markzuckerbergeillä ei ole työkaluja tai kykyä ymmärtää, miten digitaaliset välineet vaikuttavat yhteiskuntaan.”

Jarno kertoi esityksessään kymmenen vuoden työhistoriastaan digihankkeiden ja -tuotteiden parissa. Helsingin yliopiston ja Taideteollisen korkeakoulun kasvattina Jarnon projektit ovat tuoneet yhteen ihmisen ja teknologian. Hän on ollut rakentamassa viime aikoina ensin Random/Futureful-suosittelusovellusta Piilaaksossa ja sitten Yleisradiolla älykästä Voitto-uutisassaria ja Ylen personoituvaa Uutisvahti-sovellusta. Yleisradiossa tapahtuu juuri nyt paljon tekoälyrintamalla: tehdään robottijournalismia, suosittelujärjestelmiä, vaalikoneita ja interaktiivisia työkaluja. Myös Ylen tiimeissä korostuu monitieteisyys: tarvitaan monialaista osaamista ymmärtämään teknologisten työkalujen toimintaa ja vaikutuksia. Yhdysvaltalaisen tekoälyvaikuttaja, professori Pedro Domingosin sanoja lainaten Jarno ennakoi, että seuraavan tekoälyn läpimurron tulee keksimään ihmistieteilijä, ei insinööri.

Kaisa Pekkala, Jyväskylän yliopisto: ”Digitaalinen viestintäteknologia mahdollistaa moniäänisyyden — sinustakin on ehkä tullut puhemies ”

Yhä viestintäpainotteisemmaksi muuttunut työelämä korostaa digitaalisten taitojen tarvetta, muistutti Kaisa esityksensä alkuun. Silti työntekijän taidot jäävät helposti jälkeen, sillä teknologia uudistuu nopeammin kuin ihmisten kyky uudistua. Samalla työhön liittyvät vapaudet ja yksilön vastuu kasvavat, mikä korostaa luottamuksen merkitystä työelämässä. Kaisa muistutti, että digitaalisessa viestintäympäristössä viestintävalta keskittyy niille, jotka osaavat ja uskaltavat viestiä asiansa. Organisaatioista on tullut erityisesti sosiaalisen median myötä moniäänisiä ja organisaatioiden puhemiehinä toimivat yhä enemmän yksittäiset työntekijät ja asiantuntijat. Erityisesti asiantuntijaorganisaatioissa vastuu viestinnästä ja vuorovaikutuksesta kuuluu kaikille työyhteisön jäsenille. Tämä tarjoaa yksilöille mahdollisuuden tehdä omaa asiantuntemustaan näkyväksi, niin omassa työyhteisössä kuin sen ulkopuolellakin. Asiantuntijan profiili rakentuu sosiaalisessa vuorovaikutuksessa: se ei ole yksilön ominaisuus, vaan karttuvaa pääomaa, jota on toisaalta myös vaikea todentaa. Tutkimusten mukaan uusien teknologisten taitojen omaksuminen voi edistää asiantuntijaprofiilin rakentumista.

Matti Nelimarkka, Aalto-yliopisto & Futurice Oy: ”Tietojenkäsittely on liian tärkeää jätettäväksi tietojenkäsittelytieteilijöille”

Esityksessään Matti kuvasti yksilön osaamista klassisen T-mallin avulla ja kritisoi sitä, että kun yhteiskuntatieteilijöitä opetetaan koodaamaan, rakennetaan usein T-kirjaimelle toista haaraa. Matin mielestä tärkeämpää olisi paksuntaa T-kirjaimen jalkaa eli opetella teknisiä taitoja niin että ne yhdistyvät omaan ydinosaamisalueeseen. Tästä lähtökohdasta laskennallisen yhteiskuntatieteen opetusta Helsingin yliopistolla onkin nyt suunniteltu. Matti muistutti myös, että teknologiapuheeseen liittyy paljon hienoja sanoja, jotka kuitenkin vertautuvat fundamentteihin vanhoihin käsitteisiin. Esimerkiksi koneoppiminen on yllättävän lähellä regressioanalyysia ja algoritmiset järjestelmät weberiläistä byrokratiaa — siis hyvin lähellä perinteisiä yhteiskuntatieteellisiä kysymyksiä. Yhteiskuntatieteilijän olisi silti hyvä omaksua uutta sanastoa: on helpompi puhua tietojenkäsittelytieteilijälle, jos pystyy toimimaan yhteisellä kielellä.

Heini Hult-Miekkavaara, uravalmentaja, YKA ry: “Muista kirjoittaa sekä koneelle että ihmiselle, kun jätät ammatillista digitaalista jalanjälkeäsi.”

Tilaisuuden päätteeksi Heini Hult-Miekkavaara pohti digitaitojen moninaisuutta: toisaalta puhutaan koodaustaidoista ja algoritmeista, mutta samalla työpaikoilla taistellaan tulostimen asentamisen kanssa tai yritetään etsiä oikeita asioita hakukoneesta. Oman uran kannalta olennaisinta on pyrkiä ulos urautumisesta ja muistaa rohkeasti kertoa omaa uratarinaansa — myös tulevaisuussuuntautuneesti. Osaamisen ja haaveiden julkinen jakaminen auttaa myös löytämään uusia työmahdollisuuksia. Heini muistutti, että myös työnhaussa käytetään erilaisia algoritmeja, jotka ovat kovin hanakoita suosittelemaan jotakin nykyiseen profiiliin sopivaa. Siksi urahaaveita kannattaa tietoisesti rakentaa myös digitaalisesti ja tehdä uratoiveet julkisiksi. Omasta osaamisesta onkin osattava kertoa eri tavoin; täytyy vakuuttaa sekä vertaiset että eri alan ihmiset. Digitaalinen jalanjälki on arvokas uraelementti, mutta sen rakentuminen kestää kauan. Siksi koskaan ei ole liian aikaista aloittaa.

– –
Tekstiä ovat kommentoineet myös kaikki puhujat ja erityisesti Heini Hult-Miekkavaara YKA:sta.

Teksti on rinnakkaisjulkaistu myös YKA ry:n Uralehden blogissa.

Eettinen tekoäly toteutuu punnituissa käytännöissä

Tekoälyä kuvataan maiden tai maanosien välisenä kilpajuoksuna, jonka ennakkosuosikkeina ovat USA ja Kiina, sekä haastajana EU. Asetelma näkyy EU-maissa tekoälystrategioina, ohjelmina ja rahoitusinstrumentteina.

Valtioneuvoston tuoreen eettistä tietopolitiikkaa koskevan selonteon mukaan Suomi tavoittelee kilpailuetua eettisesti kestävällä tekoälyn kehittämisellä ja soveltamisella. Päämääränä ovat hyödyt yhteiskunnalle ja tavallisille ihmisille, esimerkkinä maailman parhaat julkiset palvelut. Eettisyyttä tavoitellaan yhteisesti sovituilla periaatteilla, joita palveluiden kehittäjät ja ihmisiä koskevien tietoaineistojen hyödyntäjät noudattavat.

Eettisesti kestävän tekoälyn viitekehys korostaa yleisiä periaatteita kuten läpinäkyvyttä, ihmiskeskeisyyttä, ymmärrettävyyttä, syrjimättömyyttä ja ihmisarvoa – yleviä päämääriä, joiden arvoa tuskin kukaan kiistää. Periaatteita edistetään vetoamalla yritysten itsesäätelyn tarpeeseen muuttuvassa teknologiaympäristössä, jossa ajantasainen sääntely lakien tai määräysten avulla on vaikeaa.

Eettiset viitekehykset ovat erityisen tärkeitä silloin, kun sääntely tai yhteiskunnalliset oikeudenmukaisuuden normit eivät auta jäsentämään toiminnan reunaehtoja. Periaatteet rajaavat toimintatapoja, jotka ilmiselvästi rikkovat ihmisten itsemääräämisoikeutta tai tuottavat epäterveitä käytäntöjä arkeen ja työelämään. Yleisten periaatteiden ongelma voi kuitenkin piillä niiden tulkinnallisessa avoimuudessa. Se mikä on yhdelle yritykselle vastuullisuutta tai syrjimättömyyttä, ei välttämättä ole sitä toiselle.

Olemme seuranneet vuosien ajan eettisen tietopolitiikan vahvuudeksi tunnistetun MyData-ajattelun kehittymistä Suomessa ja kansainvälisesti. MyDatan, tai omadatan, perusajatuksen mukaan kansalaisten tulee saada hallita itseään koskevien tietojen käyttöä yrityksissä ja julkisella sektorilla. MyDatassa yksilöä ajatellaan digitaalisen talouden keskuksena ja datavirtojen keskipisteenä. Tavoitteena on haastaa henkilökohtaisten tietojen taloudellisen hyödyntämisen epätasa-arvoisuus siirtämällä kontrolli yrityksiltä ihmisille, joista aineistoja kerätään.

MyDatan edistäjät ovat tehokkaasti osoittaneet ihmiskeskeisyyden tarpeellisuuden datatalouden rakenteissa. Samalla ihmiskeskeisyyttä kuitenkin tulkitaan varsin joustavasti. Se voi tarkoittaa kansalaiselle tasavertaista osallistumista digitaaliseen yhteiskuntaan, yritykselle taas väylää päästä yksilön kautta käsiksi datajättien hallussa oleviin aineistoihin.

Mikä merkitsee yhdelle toimijalle kaikkien digitaalisten oikeuksien suojaamista, voi toiselle tarkoittaa mahdollisuutta tarjota maksukykyisille yksityisyyttä turvaavia palveluja. Ihmiskeskeisyydestä tulee eräänlainen musteläiskä, jossa toimijat näkevät omasta näkökulmastaan edistämisen arvoisia piirteitä.

Yleiset eettiset periaatteet eivät siis takaa tavoiteltujen yhteiskunnallisten seurausten toteutumista. Pikemminkin yleisellä tasolla pysyminen tuottaa epämääräistä puhetta ja mitäänsanottamia vastauksia. Siksi eettisiä periaatteita tulee konkretisoida ja koetella käytännössä. Jotta käytännön toimijat saavat tukea päätöksilleen, tarvitaan yksityiskohtaisia esimerkkejä palveluista, joissa eettiset periaatteet toteutuvat. Inspiraatiota eettisyyteen voi hakea myös yhteistä hyvää tuottavista digitaalisista palveluista kuten Wikipediasta, tai osuuskuntaperiaatteella toimivista yrityksistä.

Henkilökohtaisten tietojen käytön eettiset periaatteet toteutuvat, kun pääsy aineistoihin pohditaan huolellisesti ja samalla määritetään, kuka voi hyötyä aineistojen käytöstä ja miten. Keskeisiä ovat aineistojen käyttöön liittyvän päätöksenteon säännöt. Tässä ei itse asiassa ole mitään uutta. Vaikka teknologia kehittyykin nopeasti, henkilökohtaisten aineistojen käytön rajoja ja mahdollisuuksia on pohdittu vuosikymmenien ajan.

On päätettävä millaista aineistoa voi kerätä tai käyttää, mihin tarkoituksiin ja kenen toimesta, missä kulkevat hyväksyttävän ja vältettävän rajat, ja kuka niihin voi vaikuttaa ja millä aikavälillä. Vastaukset eivät kumpua yleisistä periaatteista, eivätkä ole yleispäteviä. Se mikä esimerkiksi liikenteen älypalveluissa on hyväksyttävää, voi terveyden kentällä olla eettisesti arveluttavaa.

Tämän ajan suuri haaste on digitaalisen ympäristön ohjaus ja hallinnointi. Pikemminkin kuin teknologian kehittäjien kilpajuoksusta, tässä on kysymys eri näkökulmien ja käytäntöjen huolellisesta yhteensovittamisesta. Kilpailuetua tulisi hakea eettisten tavoitteiden toteutumisesta eri alojen osaamisten risteyskohdissa. Siinä missä tekoälykisaajat näkevät maalin edessään, eettinen kestävyys löytyy pikemminkin yhdistelemällä kekseliäästi vanhaa ja uutta.

– –
Tuukka Lehtiniemi (@tlehtiniemi) & Minna Ruckenstein (@minruc).
Kirjoittajat ovat tutkijoita Helsingin yliopiston Kuluttajatutkimuskeskuksessa.

Kirjoitus on rinnakkaisjulkaistu Etiikka.fi-sivulla.

8 tapaa pyristellä irti digijättien verkoista

https://www.flickr.com/photos/treehouse1977/36015094302/
Photo (cc) Jim Champion@Flickr

Tällä viikolla vietetään Mediataitoviikkoa. Myös digitaalisen yksityisyyden varjelemisen taidot ovat tärkeä osa nykypäivän mediataitoja. Sen kunniaksi Rajapinnassa päätimme koota muutaman helpon keinon parantaa verkkoyksityisyyttä ja vähentää digijättien valtaa elämässäsi.

  1. Tiukenna yksityisyysasetuksia. Monissa palveluissa voit itse valita, mitä kaikkea tietoja sinusta kerätään ja tallennetaan ja minne muualle kyseinen palvelu niitä saa jakaa. Esimerkiksi Googlessa voit määritellä, saako se tallentaa lokaatiotietoja, tietoja sovellusten käytöstä, tai nauhoittaa Google Assistentin kanssa käymäsi keskustelut. Facbookissa kannattaa säännöllisesti tarkistaa mitkä ulkopuoliset sovellukset saavat käyttää tietojasi. Omat mainosprofilointitietosi voi tarkistaa ja niiden asetuksia säätää. Voit esimerkiksi kieltää Facebookia näyttämästä sinua ystävillesi suosittelijana sellaisessa mainoksessa, jonka on tehnyt tykkäämäsi sivu.
  2. Rajoita sovellusten oikeuksia älypuhelimessasi. Älypuhelimissa sovellusten käyttöjärjestelmältä saamia tietoja voi säätää sovelluskohtaisesti. iPhonessa kannattaa käydä katsomassa puhelimen asetuksista hieman epäintuitiivisesti Screen Time -sovelluksen alle sijoitetut sovelluskohtaiset sisältö- ja yksityisyysrajoitukset. Android-laitteissa asetusten alta löytyy kohta Sovellukset / Sovelluksen käyttöoikeudet (Apps / App Permissions), josta voit säätää erikseen kunkin sovelluksen oikeuksia esimerkiksi mikrofoniin tai konktakteihin.
  3. Eristä digijätit. Monet alustapalvelut, erityisesti Facebook ja Google seuraavat upotusten avulla myös sitä, mitä teet muilla verkkosivuilla. Tätä voi estää esimerkiksi käyttämällä näitä palveluita eri selaimelle, jolla et tee muuta. Lisäksi on olemassa erilaisia selainlisäosia, jolla haluamansa palvelun voi eristää muusta selainkäytöstä. Esimerkiksi Firefoxin lisäosa Facebook Container eristää Facebookin muusta nettikäytöstä. Facebookia voi mobiilissakin pyörittää selaimella, tosin hieman Facebook-sovellusta kankeammin. Esimerkiksi yksityisviesteihin ei helposti pääse mobiiliselaimesta käsiksi.
  4. Estä seuranta. Selaimiin löytyy erilaisia lisäosia, joiden avulla kolmansien osapuolien palvelut (esim. mainostajat) eivät voi seurata jälkiäsi eri sivustojen yli. Esimerkiksi useaan eri selaimeen sopiva Ghostery tai Firefoxiin Lightbeam. Lightbeam myös havainnollistaa visualisaatioilla verkon jäljittäjien piilevää infrastruktuuria. Sama onnistuu kännykässäkin, esim. iPhonessa tämä tapahtuu sisällön lataamista estävän sovelluksen avulla (engl. content blocker, esimerkiksi AdGuard), jonka voi yhdistää eri selaimiin.
  5. Harhauta mainostajia. Monet palvelut ja lisäosat harhauttavat mainostaloutta myös ikään kuin sotkemalla profiilisi. Esimerkiksi Adnauseam-lisäosa klikkaa jokaista selaimessasi näkyvää mainosta, mikä voi tehdä kohdennusprofiilistasi melkoisen sekamelskan. Omaa Google-historiaansa. Ruin My Search History -palvelu puolestaan tekee selaimellasi valtavan määrän omituisia Google-hakuja ja yrittää siten sotkea profiilisi – ja tarjoaa hyvät naurut kaupan päälle. Kannattaa pohtia haluaako tällaisia palveluita käyttää vai ei. Mainostus- ja hakuprofiilien sotkeminen on digiajan vastarinnan muoto, jonka kääntöpuolena suositukset ja mainokset voivat muuttua oudoiksi tai jossain tilanteissa jopa kiusallisiksi.
  6. Käytä vaihtoehtoista hakukonetta. Esimerkiksi DuckDuckGo lupaa olla träkkäämättä käyttäjien tekemisiä. Se kuitenkin käyttää hyväkseen Googlen hakuindeksiä, eli eroon Googlen hakukoneesta et tällä tavalla pääse vaikka sen datankeruusta ehkä pääsetkin. Muita vaihtoehtoja on myös tarjolla, esim. ainoaksi eurooppalaiseksi hakukoneeksi itseään mainostava Qwant.
  7. Poista historiatiedot eri palveluista säännöllisesti. Jotkut alustat tarjoavat mahdollisuuden poistaa kerralla tai aikarajauksella historiatietoja esimerkiksi tehdyistä hauista. Esimerkiksi Googlen palveluista voi poistaa lokitietojaan data-asetuksista. Facebookin kohdalla tilanne on hiukan mutkikkaampi ellet ole valmis poistamaan koko tiliä, mutta vaihtoehtoisia keinoja on listattu esimerkiksi tässä iMoren artikkelissa. Yksi ratkaisu on myös tuhota tili ja luoda se sitten kokonaan uudestaan.
  8. Suosi vaihtoehtoisia viestintävälineitä. Digijättien palveluille on myös vaihtoehtoja, joiden puolesta voi puhua. Sosiaaliset verkostot liikkuvat hitaasti, mutta pikaviestien kohdalla vaihto onnistuu helpommin. Asenna puhelimeesi vaikkapa Signal ja käytä sitä viestittelyyn Facebookin omistaman WhatsAppin tai Facebook-viestien sijaan. Vaikka Facebook lupaa WhatsApp-viestien sisällön olevan päästä päähän salattuja, viestinnän metatietojen käytöstä ei luvata mitään.
  • BONUS: Vaalivahti Keväällä 2019 Suomessa järjestetään kahdet vaalit, mikä todennäköisesti saa poliittiset mainostajat liikkeelle. Vaalivahti on Open Knowledge Foundation Finlandin tutkimusprojekti, joka kerää tietoa Facebookissa tehdyistä mainoskohdennuksista vaalien aikana. Asenna projektin tarjoama WhoTargetsMe-lisäosa selaimeesi, niin pystyt seuraamaan kuka yrittää kohdentaa kaltaisiisi käyttäjiin ja lahjoitat samalla tiedot tutkimukselle.

Lopuksi: Tutkijan huomio

Digitaalisessa ympäristössä on tärkeää oppia ajattelemaan tekemisiään tiedonkeruun mahdollisuuksien ja seurausten kannalta. Jokapäiväisen tiedonkeruun estäminen, tai ainakin vähentäminen, voi myös ajatella olevan osa tämän päivän kansalaistaitoja. Samaan aikaan kansalaistaidoista puhumalla tulee korostaneeksi yksilön vastuuta omista tekemisistään tilanteessa, jossa tiedonkeruun tavat ja tiedon käytön seuraukset ovat vaikeasti hahmotettavia ja koko ajan muutoksessa, eikä ns. tavallinen tallaaja mitenkään pysy niiden perässä.

On hyvä pitää mielessä että palveluntarjoajan omat yksityisyysasetukset eivät välttämättä ole sitä miltä ne vaikuttava, ja esimerkiksi käyttäjän sijaintia on seurattu yksityisyysasetuksista riippumatta. Samoin profiilin tietoja poistaessa ja selaimen lisäosia tai yksityistä selausmoodia käyttäessä olemme palveluntarjoajan tai asiantuntijoiden vakuuttelujen varassa siitä, että tiedot todella poistuvat tai että meitä ei todella enää seurata. Datajättien poistaminen omasta elämästä omalla aktiivisuudella on vaikeaa tai mahdotonta, jos haluaa pysyä jollain tavalla nyky-yhteiskunnan jäsenenä — monen palvelun käyttö ei esimerkiksi äärimmäisen suojatun Tor-verkon kautta edes onnistu.

Viime kädessä ratkaisua ongelmiin täytyy etsiä muualtakin kuin yksilöiden käyttäytymisen muutoksista. Tasapainoisempaa ja reilumpaa digiympäristöä odotellessa ei ole kuitenkaan pahitteeksi pitää verhojaan suljettuna ja oviaan lukittuna.

– –
Tekstiä varten on kerätty vinkkejä Rajapinta ry:n Slackissa. Tekstin ovat kirjoittaneet Salla-Maaria Laaksonen ja Tuukka Lehtiniemi ja sen ideointiin ovat osallistuneet Jesse Haapoja ja Jukka Huhtamäki.

Lukemisen datafikaatio ja uskottavuus

Yhä useampi arkipäiväinen toimintamme muutetaan erilaisten digitaalisten välineiden avulla dataksi, jota käytetään erilaisiin laskennallisiin toimiin kuten käyttäytymisemme ennakointiin ja sisältöjen personointiin. Tätä prosessia kutsutaan datafikaatioksi. Ihmiset luonnollisesti tulkitsevat tätä prosessia kuten ympäristöään ylipäätään. Tässä blogikirjoituksessa keskityn lukemisen datafikaatioon ja miten ihmiset sitä ymmärtävät.

Julkaisimme hiljattain Airi Lampisen kanssa artikkelin, jota varten haastattelin jo suljetun uutissuosittelujärjestelmä Scoopinionin käyttäjiä ja pääkehittäjää. Scoopinion oli Suomessa kehitetty uutissuosittelujärjestelmä, joka seurasi käyttäjien lukuaikaa eri uutisartikkeleissa. Se suositteli käyttäjille heitä tältä pohjalta mahdollisesti kiinnostavia artikkeleita. Scoopinionia voidaan siis pitää yhtenä esimerkkinä datafikaatiosta.

Uskottavuus ja data

Haastatteluissa nousi esiin uskottavuus: koska Scoopinion keskittyi lukuajan mittaamiseen eikä perinteisempään klikkipohjaiseen analytiikkaan, kokivat haastateltavat sen antamat suositukset luotettavammiksi. Tämä luotettavuus syntyi ajatuksesta, että lukuaika on pelkkää klikkausta parempi todiste siitä, että datan lähde on pitänyt artikkelia kiinnostavana. Lukuajan ajateltiin siis edustavan paremmin lukijan arviota artikkelista. Tämä tapa kehystää lukuaika oli toki myös se tapa, jolla järjestelmän kehittäjät pyrkivät palveluaan markkinoimaan.

Scoopinionin uskottavuus siis rakentui lukemiseen liitettyjen merkitysten varaan, joita kehittäjät käyttivät hyväkseen sekä järjestelmää rakentaessaan että sitä markkinoidessaan. Järjestelmää käyttäneet ihmiset tulkitsivat järjestelmän toimintaa lukemiseen liitettyjen merkitysten kautta. Järjestelmää tehtiin ymmärrettäväksi pohjaten näihin merkityksiin, kuten esimerkiksi siihen, että ihmiset ajattelevina olentoina arvioivat lukemaansa omien mieltymystensä mukaan ja viettävät enemmän aikaa itseään kiinnostavien tekstien parissa kuin sellaisten tekstien, jotka heitä eivät kiinnosta. Toisaalta palvelu myös toi uusia merkityksiä lukemiselle: kun palvelu seurasi lukemista, lukeminen muuttui implisiittiseksi suosittelemiseksi. Tämän seurauksena palvelu, jossa käyttäjillä ei ollut mahdollisuutta nähdä muita käyttäjiä koettiin kuitenkin tietyllä tapaa sosiaalisena.

Algoritmiset palvelut osana laajempaa merkitysjärjestelmää

Myös muissa algoritmisissa palveluissa ymmärrystä rakennetaan niitä edeltävien merkitysten varaan, samalla kuitenkin tuoden niihin jotain erilaista. Facebook-ystävät eivät ehkä tarkoita täsmälleen samaa kuin ihmiset jotka koemme ystäviksemme sen ulkopuolella, mutta palvelu käyttää kuitenkin hyväkseen ystävyyteen liitettyjä merkityksiä. Kun kyydityspalvelu Uber alkoi menestymään, rupesivat monet muut jakamistalouspalvelut markkinoimaan itseään tietyn asian “Uberina”: uusien palveluiden uskottavuutta menestyä rakennettiin Uberin menestyksen päälle. Nämä palvelut nojasivat tällä kehystämisellä Uberiin liitettyihin merkityksiin, joka puolestaan on idealtaan hyvin samankaltainen kuin sitä vanhemmat taksipalvelut. Tässä tapauksessa korostui Uberin lupaus tehdä vanha asia kustannustehokkaammin ja antaa “tavallisille” ihmisille mahdollisuus hyötyä taloudellisesti toiminnasta, joka oli aiemmin nähty pääosin tietyn ammattiryhmän toimialana.

Algoritmisia järjestelmiä sosiaalitieteellisestä näkökulmasta tutkittaessa tulisi huomioida, että usein niiden käyttämää dataa ja siihen liittyviä merkityksiä on hankalaa, ellei mahdotonta, erottaa itse algoritmeista, joita järjestelmät käyttävät. Usein data edustaa palveluissa ihmistä ja tästä datasta tehdään selkoa niiden käsitysten kautta, joita ihmisten toimintaan liitetään palvelun ulkopuolella.

Järjestelmät ovat ihmisten rakentamia ja niitä ruokitaan ihmisten toiminnalla. Ne ovat siis läpeensä sosiaalisia.

Artikkeli julkaistiin ihmisen ja tietokoneen välisen vuorovaikutuksen tutkimukseen keskittyvässä NordiChi-konferenssissa ja sitä tehtiin osana Koneen Säätiön rahoittamaa Algoritmiset järjestelmät, valta ja vuorovaikutus -hanketta.

Artikkelin tiedot:
Haapoja, J., & Lampinen, A. (2018). ‘Datafied’ Reading: Framing behavioral data and algorithmic news recommendations. In NordiCHI 2018: Revisiting the Life Cycle – Proceedings of the 10th Nordic Conference on Human-Computer Interaction (pp. 125-136). DOI: 10.1145/3240167.3240194

Kuka saa päättää, mitä dataa tutkijalla on käytössään? Ei ainakaan amerikkalainen suuryritys

social media logos and light beams
Photo (cc) Kevin Dooley Flickr, edits by Salla L

Sosiaalisen median datan käyttöä tutkimuksessa suitsitaan nyt monelta kantilta. Tämän vuoden keväällä paljastuneen Cambridge Analytica -skandaalin jälkeen sekä Facebook että Twitter ovat uudistaneet pikavauhdilla datapolitiikkaansa. Samaan aikaan tutkijoita ja yliopistojen lakimiehiä on huolestuttanut toukokuussa voimaan tullut GDPR sekä Suomen tuleva uusi tietosuojalaki, joka on hyväksytty eduskunnassa marraskuussa.

On pelkästään hyvä asia, että aineistojen käyttöön kiinnitetään enemmän huomiota, ja että tutkijat joutuvat entistä tarkemmin miettimään aineistojen käytön oikeutuksia. Pohdinnoissa näyttäisi kuitenkin kummallisesti sekoittuvan aineiston tekninen saatavuus, laillisuus ja eettisyys.

Teknisestä näkökulmasta aineistojen saatavuus on hiukan hankaloitunut. Esimerkiksi Facebookin julkisilta sivuilta ei pysty enää rajapinnan (API) kautta lataamaan koneluettavassa muodossa viestejä kirjoittaneiden käyttäjien nimiä. Ryhmistä dataa saa ladata ainoastaan ryhmän ylläpitäjän luvalla. Yksittäisistä profiileista ladattavan datan käyttöä Facebook on rajoittanut jo huomattavasti aiemmin; toki käyttäjä voi halutessaan edelleen sovellusten kautta luovuttaa aineistojaan. Tämän kevään uudistusten myötä kuitenkin myös laajempia käyttäjätietoja tarvitsevat sovellukset joutuvat Facebookilla tarkempaan syyniin. Samanlainen prosessi on syntymässä myös Twitterin osalta: jatkossa jokaisen rajapintaa käyttävän sovelluksen on saatava Twitterin hyväksyntä.

Tutkijayhteisössä keskustelu API-rajoituksista on ollut varsin dramaattista. Tutkijat ovat kansainvälisesti huolestuneet Facebook-tutkimuksen tulevaisuudesta siinä määrin, että aiheesta on julkaistu kirjelmiä ja tehty listauksia rajapintojen avulla tehdyistä tutkimuksista. Akateemiset tutkijat ovat – oikeutetusti – huolissaan siitä, että aineistojen saatavuuden rajoittaminen rajaa myös tiettyjä tutkimusaiheita pois ja siten ohjaa tutkimusta. Toisaalta rajapintojen rajoitukset eivät estä tutkijaa tutkimuseettisten rajojen ja lainsäädännön puitteissa keräämästä laadullista aineistoa esimerkiksi Facebook-ryhmistä.

Toiset ovat huolestuneet palvelujen käyttöehdoissa (Terms of Service, TOS) mainittavista käytön rajoituksista. Joidenkin tulkintojen mukaan esimerkiksi YouTuben käyttö tutkimusaineistona ei ole lainkaan sallittua, koska palvelun käyttöehdot kieltävät palvelun muun kuin yksityisen käytön (jos tilanne olisi tämä Googlen mielestä, luulisi että joku niistä melkein kolmesta miljoonasta YouTube-hakusanalla löytyvästä tutkimusartikkelista olisi jo päätynyt raastupaan). Todennäköisesti amerikkalaisyrityksen ehdoista puuttuu erillismaininta akateemisesta käytöstä, koska se sisältyy jo Yhdysvaltojen lainsäädännössä olevaan fair use -pykälään.

GDPR:n ja Suomen tulevaisuudessa voimaan astuvan tietosuojalain myötä sosiaalisen median aineistojen henkilötietomaisuus on noussut uudella tavalla valokeilaan, vaikka tilanne ei käytännössä juuri ole muuttunut Suomen vanhaan henkilötietolakiin verrattuna.  Sosiaalisen median aineisto on käyttäjänimien vuoksi usein henkilödataa, ja tuoreiden tiukimpien tulkintojen mukaan sen kerääminen on nyt tietosuojasyistä kokonaan kielletty.

Sekä GDPR, tuleva tietosuoja-asetus että Suomen nykyinen henkilötietolaki mainitsevat kuitenkin tieteellisen tutkimuksen poikkeuksena henkilötietojen käsittelyyn. Tutkimus on erityisasemassa myös arkaluontoisia tietoja käsiteltäessä sekä rekisteröityjen oikeudessa tietojen poistoon (ns. oikeus tulla unohdetuksi ei automaattisesti päde, ks. Kohta 2.3.8). Henkilötietojen käsittely vaatii rekisteriselosteen ja GDPR:n ohjeistuksien mukaan myös vaikutustenarvioinnin, jos aineistossa on arkaluontoisia tietoja.

Lain noudattaminen ja tutkimuksen poikkeusasema eivät kuitenkaan tarkoita, että kaikenlainen henkilötietojen käsittely olisi eettisesti oikein, tai että kaikenlaisen avoimen aineiston käyttö olisi eettistä. Tämän määrittelee tutkimuseettinen harkinta, jonka periaatteet tiedeyhteisö on itse määritellyt ja joita se myös valvoo. Siksi GDPR:n nostattama keskustelu on tervetullutta ja omiaan parantamaan tutkittavien oikeuksia ja lisäämään tutkimusaineistoista käyttävää eettistä keskustelua. Aiemmin on ehkä luotettu liikaakin siihen, että TOS ratkaisee suostumuksen ongelmat, jotka on ikään kuin ulkoistettu yrityksen tuottamalle dokumentille. Samaan aikaan on varsin hyvin tiedossa, etteivät käyttäjät juuri lue käyttöehtoja.

Eettisen keskustelun keskiössä on usein tutkittavan suostumus (informed consent). Tutkimuseettisen neuvottelukunnan ihmistieteiden eettinen ohjeistus muistuttaa, että tutkittavan “suostumuksen periaatteesta voidaan poiketa tutkittaessa julkistettuja ja julkisia tietoja sekä arkistoaineistoja”. Tästä näkökulmasta sosiaalisen median aineistojen käyttöön ei tarvita tutkittavan suostumusta, jos aineisto on julkisesti saatavilla.

Oleellisempi on kuitenkin ohjeistuksen toinen kohta: vahingoittamisen välttäminen. Siihen keskittyy myös esimerkiksi Association of Internet Researchers AoIR:n eettinen ohjeistus. Vahingoittamisen välttäminen tarkoittaa esimerkiksi sosiaalisten ja taloudellisten haittojen minimointia sekä tutkimustulosten julkaisemisen mahdollisten seurausten pohdintaa. Se on keskeinen osa tutkimuseettistä harkintaa ja tutkijan ammattitaitoa.

Mutta tutkijalla on myös toinen ammatillinen ja eettinen velvoite: tuottaa yhteiskunnalle kriittistä tietoa. Yhteiskunnalliset ilmiöt Suomessa ja muualla heijastuvat entistä isommin myös digitaalisille alustoille. Siksi ei ole eettisesti kestävää tulkita lakeja ja käyttösääntöjä tiukasti niin, että amerikkalainen alustayritys sanelisi, mitä suomalainen tieteellinen tutkija saa sosiaalisesta mediasta tutkia. Sen sijaan se tarkoittaa, että eettisten pohdintojen perusteella toisinaan voi olla jopa perusteltua rikkoa käyttöehtoja – alkaen esimerkiksi siitä, että käyttöehtojen vastaisesti anonymisoidaan tutkimusaineisto. Tällaista tieteen vapautta puolustaa myös Suomen tuleva tietosuoja-asetus.

* Teksti: Salla-Maaria Laaksonen (Helsingin yliopisto, @jahapaula) & Margareta Salonen (Jyväskylän yliopisto, @MaakeSalonen)

Ps. Rajapinta ry. yhdessä MEVI ry:n kanssa järjestää 10. tammikuuta Tieteiden yössä tapahtuman, jossa kerromme sosiaalisen median aineistojen tutkimuskäytöstä. Työpajassa pääset myös itse penkomaan someaineistoja. Tervetuloa mukaan Tieteiden talolle!

Pps. Erinomaista pohdintaa tutkijoiden ja käyttöehtojen yhteiselosta kriminologian professori Matthew Williamsin ja kumppaneiden artikkelissa Sociology-lehdessä.