
Ohjaamaton koneoppiminen ja tekstintulkinnan objektiivisuus
Ohjaamattomat koneoppimismenetelmät ovat viime vuosina saaneet paljon suosiota yhteiskuntatieteellisessä tekstianalyysissa. Aineistoa automaattisesti jäsentelevän ohjaamattoman mallinnuksen ajatellaan voivan tehdä tekstintulkinnasta objektiivisempaa. Tulkinnallisen tekstianalyysin kontekstissa objektiivisuutta ei kuitenkaan tulisi samaistaa ajatukseen mekaanisesta laskennasta, joka eliminoi subjektiivisen tulkinnan analyysiprosessin jostakin vaiheesta. Pikemminkin ohjaamaton oppiminen voi auttaa tekemään tulkinnallisista prosesseista läpinäkyvämpiä ja mahdollistaa tulkintojen pohjaamisen aiempaa kattavammalle informaatiolle.