Vietimme viikon 3.-7.4. SSMA-projektin tutkijaporukkalla startupyritys Hupparihörhön luona. Kenttätyöviikon tarkoituksena oli tutustua Hupparihörhön kehittämään Underhood-palveluun, joka mittaa yritysten mainetta sosiaalisen median dataan perustuen.
Underhood on ollut lähikuukausina uutisissa toteutettuaan Aamulehden kanssa kuntavaalitulosta Tampereella ennustavan mainemittarin. SSMA-projektin puolesta olemme kiinnostuneita tutkimaan, miten sosiaalisen median datalla voidaan mitata ja ennustaa yhteiskunnallisia ilmiöitä. Viikko Underhoodilla kuntavaalien alla tarjosi erinomaisen mahdollisuuden seurata konkreettisen tapauksen ennustamista somedatasta perehtyen samalla Underhoodilaisten näkemyksiin data-analytiikan mahdollisuuksista.
Alkuviikon aikana tutustuimme Underhoodin somedatasta yrityksille laskemaan mainepisteytykseen, joka perustuu kolmelle eri mittarinarvolle. Ensinnäkin Underhood seuraa yritysten näkyvyyttä, joka lasketaan yrityksen Facebook-sivun saamien tykkäysten ja Twitter-seuraajien määristä sekä Facebookin antamasta buzz-arvosta. Toiseksi Underhood mittaa yritysten dialogia someyleisön kanssa, joka määrittyy yrityksen keskimääräisen julkaisumäärän ja julkaisujen saamien kommenttien, tykkäysten sekä jakojen perusteella. Lisäksi dialogimittarin arvoon vaikuttaa yrityksen vastausaste saamiinsa kommentteihin. Kolmanneksi mainepisteytykseen vaikuttavat yrityksen ja yleisön käyttämien sanojen samanlaisuus ja sentimenttianalyysilla saatu yleisön kommenttien sävy. Näkyvyyttä, dialogia ja samanlaisuutta mittaavat pisteet skaalataan Underhoodissa asteikolle 0-10. Näiden pisteiden keskiarvosta lasketaan sitten varsinainen mainepisteytys, jonka arvo on myös asteikolla 0-10.
Underhood-pisteytyksen ja sen tekijöiden tarkastelussa meitä kiinnostaviksi kysymyksiksi nousivat eri mittareiden väliset suhteet ja mittauskohteet: mitä oikeastaan mitataan, kun kerätään dataa esimerkiksi yritysten ja Facebook-tykkääjien yhteisesti käyttämien sanojen määristä? Millä perustein voisimme ajatella, että somedatan pohjalta määritetyt mittarit olisivat luotettava ennustaja ilmiöille, joita koskeva uutisointi ja keskustelu eivät rajoitu sosiaaliseen mediaan?
Underhood-pisteytys on aikaisemmin ennustanut oikein esimerkiksi semifinalistien valinnan Ison-Britannian X-Factor -ohjelmassa, mutta kilpailun voittajan ennuste sen sijaan oli väärä. Yksi selitys tälle on, että ennusteen sotki kansainvälisen sosiaalisen median osoittama kiinnostus: X-Factor UK:ssa äänestäminen oli mahdollista ainoastaan Isossa-Britanniassa, mutta Underhood-pisteytys heijasteli finalistien suosiota kansainvälisellä tasolla. Tämä on esimerkki tapauksesta, jossa sosiaalisen median dataan perustuvat mittarit mittaavat ennusteen kohteesta (pärjääminen Ison-Britannian X-Factorissa) erillistä ilmiötä (suosio kansainvälisessä sosiaalisessa mediassa).
Saimme käyttöömme Underhoodin pisteytyksen perustana olevan datan, joka sisälsi eri mittareiden arvot ja näihin vaikuttavat tekijät päiväkohtaisesti tallennettuina elokuulta 2016 alkaen (dataa yhteensä 3958 yritykseltä ja poliitikolta). Viikon aikana tutkimme datan eri muuttujien riippuvuutta toisistaan ja vertasimme eri mittarinarvojen muutosta muun muassa yritysten toimialan ja liikevaihdon suhteen. Kiinnostavasti havaitsimme, että yritysten ja someyleisön kielenkäytön keskinäinen samanlaisuus korreloi yritysten julkaisujen saaman kommenttimäärän kanssa. Tämä viittaisi siihen, että samanlaisuusmittari saattaa kuvata käytetyn kielen yhteneväisyyden lisäksi myös keskustelun volyymia sosiaalisessa mediassa.
Eri sosiaalisen median dataan perustuvien mittareiden välinen “työnjako” vaikuttaisi olevan yksi merkittävä tekijä ilmiöiden ennusteiden arvioissa. Ennusteen luotettavuuden arvioinnissa on tärkeää tietää, mitä ilmiön puolia eri mittarit mittaavat. Erillisiä mittareita käytettäessä olisi hyvä varmistua, että ilmiön eri puolia mittaavat pisteytykset eivät riipu keskenään samoista tekijöistä, kuten esimerkiksi keskustelun aktiivisuudesta. Näin mittareiden keskinäisen tärkeyden tai painotuksen arviointi selkeytyy ennustetta muodostaessa.
Underhoodin mittareiden keskinäiset painotukset ovat viime päivinä nousseet esille myös Aamulehden mainemittarin antamien kuntavaaliennusteiden yhteydessä. Mittarin ennusteet eivät lopulta vastanneet kuntavaalitulosta Tampereella. Aamulehdessä tämän arvioitiin johtuvan ehdokkaiden suuresta määrästä ja suhteellisesta vaalitavasta, jotka vaikeuttivat mainemittarin antamien lukujen tulkintaa. Underhoodin mukaan mittari taas olisi antanut tarkemman tuloksen, jos Facebook-tykkääjien määrää olisi painotettu nykyistä enemmän.
Keskeisellä sijalla tässäkin tapauksessa on kysymys: minkä ehtojen vallitessa voimme pitää sosiaalisen median suosiota luotettavana ennustajana vaalitulokselle? Underhoodin mainemittarin antamat ennusteet eri ilmiöistä – olivat ne sitten onnistuneita tai eivät – tuottavatkin hyödyllistä aineistoa, jonka avulla tätä ongelmaa voidaan tutkia.