Algoritmit uutisissa: ensimmäisiä havaintoja

Minua kiinnosti kuinka suomenkielisessä mediassa puhutaan algoritmeistä, tekoälystä ja koneoppimisesta; tuosta tämän päivän maagisesta taikuudesta. Ensimmäinen yllätykseni on, että ensimmäinen osuma varsin laajassa media-aineistossamme on vuodelta 1994! Noin muutekin hämmennyin kun Aamulehden uutisoinnissa ei ole selkeää tihentymää tai määrän kasvua – uutisointi on ollut erittäin aktiivista jo vuodesta 2000. Yleisradiolla sen sijaan nähdään selvästi, kuinka uutisointi on kasvanut noin 2012 vuodesta erittäin paljon, mutta sitä ennen uutisissa nämä taikasanat ovat olleet enemmänkin sivuhuomioita.

Screenshot 2017-07-12 16.42.20
Aamulehden uutiset missä on sana algoritmi, tekoäly tai koneoppiminen
Screenshot 2017-07-12 16.42.09
Yleisradion uutiset missä on sana algoritmi, tekoäly tai koneoppiminen

 

Havaitsimme Aamulehden olleen poikkeuksellisen aktiivinen algoritmiuutisoinnissaan jo 2000-luvun alkupuolella, kun Yle siitä villiintyi vasta 2010-luvun puolella. Selvää kuitenkin on, että 2010-luvulla algoritmeistä puhutaan merkittävästi enemmän kuin 2000-luvulla.

Aiheiden osalta käytimme aina yhtä trendikästä aihemallinnusta ja uutisaineistosta löytyikin 41 erilaista aihetta – jotka selkeyden takia luokittelimme kymmeneen ryhmään:

  1. Pelit ja peliarvostelut
  2. Tekniikan kehitys, esimerkiksi itsestään ajava auto sekä tekoäly
  3. Elokuvat, viihde ja taide
  4. Kaupalliset palvelut ja niiden algoritmit
  5. Tutkimus algoritmeistä
  6. Tietoturvallisuus
  7. Ohjelmoinnin opetus peruskoulussa
  8. Työllisyys ja työelämän murros
  9. Algoritmien kaupallinen arvo
  10. Algoritmit ja maailmanpolitiikka
timeline.png
Algoritmit uutisissa teemoittain

Havainnoimalla eri teemojen näkyvyyttä mediassa huomaamme, että 2000-luvun alusta tähän päivään on tapahtunut siirtymä viihteistä ja peleistä erityisesti kaupallisten palveluiden algoritmien pohdiskeluun ja esimerkiksi algoritmien vaikutukseen työelämässä.

Temaattinen muutos on tervetullut algoritmisten järjestelmien yhteiskunnallisen merkittävyyden takia, mutta yhteiskuntatieteissä juuri nyt trendikäs kriittinen algoritmitutkimus ei ainakaan tämän analyysin perusteella ollut erityisesti esillä. Ehkäpä peruskoulun ohjelmointiopetuksessa kannattaisi käyttää myös muutama tunti pohtimaan teknologian valtaa eikä vain yrittää oppia ohjelmoinnin alkeita?

Kiitämme Yleisradiota sekä Alma mediaa tutkimukseen käytettyjen aineistojen tuomisesta käyttöömme. Perinteisestihän Suomessa on aina tutkittu Helsingin Sanomia, mutta heidän kautta media-aineistoa ei ole saatavilla.

Nyt malttia Kela – digitalisaatio ja julkinen hallinto

computer2bsays2bnoEräs työkaverini huomasi, että Kelakin on lähtenyt mukaan digitalisaatiopöhinään. Kela hienosti kuvaa, kuinka ensimmäisenä sujuvoitetaan prosesseja ja mietiään, miten tämä pitäisi tehdä; vasta tämän jälkeen asia digitalisoidaan. Samaan aikaan tekstistä kuitnekin huokuu tietty usko siihen, että palveluprosessia voi selkeyttää käyttämällä Suomessa tällä hetkellä ah-niin-trendikästä tekoälyä.

Jansson & Erlingsson (2014) kuvaavat sähköisen hallinnon (e-Government) kehittymistä Ruotsissa 1980-luvulta 2000-luvulle. Heidän mielenkiintoisin löydös liittyi useisiin yrityksiin automatisoida ja vähentää julkishallinnon asiakaspalvelun määrää: automaattiset prosessit eivät koskaan osaa tulkita sääntöjä rivien välistä sekä harkita kokonaisuutta. Toki voidaan sanoa, ettei kokonaistilanteen tulkinta ei ole ollut ennekään Kelan vahvuus, joten ehkä tässä ei menetetä mitään. On kuitenkin syytä pitää mielessä Janssonin & Erlingssonin huomio

The fact that technology does not discriminate, but treats everyone as equal, there- fore becomes both its biggest advantage and disadvantage—the former because arbitrariness can be avoided and the latter because various needs, issues, or skills are not captured

Kelan kuvaama visio digitalisaation mahdollisuuksista todellakin tuo esille sitä, että vihdoinkin on mahdollista palvella kaikki samalla tavalla ja hehkutetaan, kuinka tämä on parannus nykytilanteeseen. Esimerkiksi Kelan esimerkki siitä kuinka työttömäksi jäänyttä autetaan tulevaisuudessa näyttää tietyn deterministisyyden lähestymistavassa:

Kone voi hahmottaa esimerkiksi työttömäksi jääneen ihmisen tilannetta jatkokysymyksillä. Tiedätkö, milloin uusi työ on alkamassa? Oletko kiinnostunut koulutuksesta? Haetko työttömyysetuutta?

Tarkoitukseni ei ole kuitenkaan vain nurista tai änkyröidä. Digitalisaatiossa on paljon mahdollisuuksia prosessien yksinkertaistamisessa. Esimerkiksi automaatisoitu veroehdotus on hyvä esimerkki siitä, miten kokonaista ajatusmaailmaa voidaan kääntää kerralla oikeaan suuntaan.

Kelassakin on varmasti prosesseja, joita voi automatisoida erittäin helpposti – esimerkiksi opintotuen myöntäminen sekä lapsilisät. Näissä elämänvaiheissa ei yleensä ole muuten isoa kriisiä missä olisi syytä tarkastella koko yhteiskunnan turvaverkon toimintaa.

Mutta esimerkiksi työttömyydessä – vaikka se perusturvan myöntäminen on helppoa – voisi olla hyväksi samaan aikaan tarkastella elämää laajemmin. Olisiko syytä yrittää hakea toimeentulotukea? Miten Kelan, kunnan ja työvoimaviranomaisten palvelut muodostavat yhtenevän kokonaisuudeen? Näitä kysymyksiä ei sellaisenaan voine jättää automaation varaan, varsinkaan jos se toteutetaan mitä Neyland & Möllers (2016) kutsuivat if-then -säännöillä, eli yksinkertaisiksi “jos tämä pitää paikkansa tee näin”-mallehin. Minun ei ole mitään syytä epäilä, etteikö Kelan pyrkimys olisi tämän kaltaiseen automatisaatioon, koska kaikki ehdot voitaisiin silloin ottaa suoraan Kelan sääntelystä. Tällöin kyseessä on joustamaton ja etukäteen määritelty lähestymistapa sosiaaliturvaan.

Toki tekoälyllä voisi tehdä paljon muutakin! Voidaan mielikuva-harjoituksena miettiä osittain ohjattua tai ohjaamatonta koneoppimista sosiaaliturvan osana: sen sijaan, että säädökset sanoisivat tarkkaan, mitä tukea annetaan ja kuinka paljon, annettaisiin tekoälylle hieman vapautta säädellä itseään. voitaisiin miettiä myös muuta tapaa lähteä (mihin uskon Kelan paljon puhuman tekoälyn perustuvan; siellä tuskin on taustalla esimerkiksi pyrkimystä tehdä laajaa koneoppivaa prosessia, joka korjaisi toimintaansa huomattuaan, mitä vaikutuksia sosiaaliturvapäätöksillä oli. (Ei, en pidä tätä hyvänä ideana; mutta venytellään vähän aivoja siitä, mitä tekoälyllä voisi saada aikaan.)

Tiivistäen: digitalisaatio ei mielestäni ole sellaisenaan hyvä tai paha. Kysymys on enemmän löytää tasapaino automatisoitujen palveluiden ja automatisoimattomien palveluiden kohdalla. Koen, että sosiaaliturva on eräs alue, missä tiukka byrokratia (joko algoritmisesti tai algoritmittomasti) ei välttämättä tuota yhteiskunnan kannalta parasta lopputulosta. Sen sijaan pitäisi pyrkiä arvioimaan kokonaiskuvaa ja rakentaa tukijärjestelmiä tämän kautta – missä ihmiset ovat usein parempia kuin mikään tekoälyllinen prosessi.

 

Hajaantukaa – täällä ei ole mitään nähtävää – algoritmikeskustelusta Suomessa (osa 1)

Screenshot 2017-03-15 11.42.35Algoritmit ovat kuuma aihe paitsi julkisessa keskustelussa, myös kansainvälisessä yhteiskuntatieteellisessä kirjallisuudessa. Pelkästään viime vuoden aikana julkaistiin ainakin kolme erikoisnumeroa, missä käsiteltiin algoritmeja ja niiden roolia yhteiskunnassa. Niin akateemisessa keskustelussa, kuin populaareissakin teksteissä on aistittavissa tietynlainen algoritmien musta magia. Algoritmit eivät ole mitään taikaotuksia jotka hallitsevat maailmaa. Algoritmi on Wikipedian ensimmäisen lauseen mukaan

yksityiskohtainen kuvaus tai ohje siitä, miten tehtävä tai prosessi suoritetaan; jota seuraamalla voidaan ratkaista tietty ongelma.

Maailma on siis täynnä digitaalisia ja vähemmän digitaalisia algoritmeja. Silti pääpaino tuntuu olevan digitaalisissa ympäristössä, kuten Kari Haakanan suomenkielisessä pohdinnassa, vaikka siinä taitavasti tuodaan yhteen jopa klassista teknologian tutkimuksen argumenttejä. On totta, että digitaalisuus todella muuttaa monia ympäröiviä tapahtumia ja algoritmit ovat digitaalisuudessa  keskeisessä roolissa. Vastaavia yksityiskohtaisia kuvauksia ja ohjeita ongelman ratkaisuun on kuitenkin  aina ollut olemassa.

Esimerkiksi Kelan viimeaikainen toimeentulotukisotku monine muotoineen herättää varsin paljon kysymyksiä toimeentulotuen laskennassa käytetystä algoritmista. En tiedä onko taustalla tietojärjestelmän sotkut vai muuten prosessisuo, mutta julkisuuteen nostetut esimerkit – kuten tarve myöntää henkilölle sentin toimeentulotuki maksusitoumusten saamiseksi eteenpäin  – kertovat, että ”algoritmi” ei nyt oikeastaan toimi erityisen järkevästi. Ehkä tässä tullaan keskeiseen huomioon, jota jo Jansson & Erlinngsson (2014) havaitsivat jo aiemmasta tutkimuksesta: haasteena digitaalisissa (sekä ei-digitaalisissa) algoritmeissa on sääntöjen joustamattomuus – usein todellinen maailma ei sopeudu tiukkaan algoritmin ajattelemaan muotoon.

Tässä kohtaa ehkä voi huokaista helpotuksesta, algoritmit ovat kuin todella tarkkoja byrokraatteja. Mutta missä sitten piilee digitalisaation suuri mullistus? Miksi algoritmit ovat niin tapetilla yhteiskuntatieteellisessä kirjallisuudessa ja miksi niistä vouhkotaan (juuri nyt) niin paljon?

On toki totta, että digitaalisten palveluiden myötä me kaikki altistumme mahdollisesti uudenlaiselle, näkymättömälle byrokratialle ja vallankäytölle. Uutta ehkä on, että nyt päätöksentekijänä voi olla joku kasvottomalta näyttävä järjestelmä (noh, en tiedä onko se Kela yhtään parempi esimerkki kasvollisesta järjestelmästä). Mutta, kuten useimmiten, kaiken takaa löytyy kuitenkin ihminen. Algoritmi on aina ihmistoimijoiden tuottama väline, joka toteuttaa ihmistoimijoiden suunnitteleman prosessin. Teknologia-alan demografian perusteella tuo ihmistoiija on melko varmasti valkoinen mies, vaikkei tosin keski-ikäinen. Ja tässä nyt ei ole mitään uutta taivaan alla, valitettavasti. Jyllääväthän valkoiset (keski-ikäiset) miehet monessa muussakin yhteiskunnan päätöksenteon koneessa.

Yhteiskuntatieteellinen mielenkiinto algoritmeihin selittyy niiden tuoreudella. Kyseessä on konkreettinen uusi ”esine”, jota mätkiä tutkimusmenetelmillä ja ajatuksilla. Ja tuoreet aiheet usein herättävät tutkijoiden mielenkiintoa, koska ne ovat uusia ja tuoreita. Toki on tutkimukselle myös tarvetta. Kuten Kitchin (2017) huomauttaa, kriittistä tutkimusta algoritmeista on vähän – varsinkin verrattuna kaikkeen muuhun algoritmitutkimukseen esimerkiksi tietojenkäsittelytieteessä ja insinööritieteissä. Pohdinkin siis,

  • Miten julkisessa keskustelussa käytetään sanaa algoritmi ja mitä sillä oikeastaan tarkoitetaan?
  • Miten perinteiset vallankäytön muodot soveltuvat algoritmien kritisoimsieen ja mitä uutta algoritmit tuovat esimerkiksi perinteiseen byrokratian ajatukseen?
  • Voisimmeko silti koettaa olla nostamasta algoritmia kultaiselle jalustalle ja sen sijaan purkaa mitä oikeastaan tarkoitamme sillä?

Postailen kevään aikana enemmän ajatuksiamme tästä aiheesta ja käsittelemme tematiikkaa myös meetupeissamme.

Botteja, algoritmeja ja kokemuksen väärentämistä

 

Tällä viikolla Etelä-Saimaa julkaisi Juho Maijalan kirjoittaman jutun, jossa kerrottiin kansanedustaja Jani Mäkelän (ps.) mielipidekirjoituksiin kohdistuneesta bottiklikkausliikenteestä. Klikkiliikenteen seurauksena kyseiset kirjoitukset olivat nousseet lehden luetuimpien listalla kärkeen. Tapaus on rakenteeltaan mielenkiintoinen. Joku tai jotkut tahot ovat käyttäneet botteja vaikuttaakseen algoritmiin vaikuttaakseen juttujen asemaan verkkosivulla, minkä mitä luultavimmin toivotaan vaikuttavan lukijoiden toimintaan ja ajatuksiin. Tapaus siis suorastaan huokuu nykyaikaa ja näyttää osuvasti, kuinka algoritmeja voidaan valjastaa palvelemaan tarkoitusperiä, joita niiden kehittäjät eivät ole toivoneet.

Erving Goffman puhuu teoksessaan Frame analysis (1986) kokemuksen väärentämisestä (käyttäen termiä fabrication englanniksi). Etelä-Saimaan jutussa puhutaan näkyvyyden lisääntymisestä yhtenä seurauksena manipulaatiosta; itse lisäisin joukkoon myös kokemuksen muokkaamisen. Korkea asema luetuimpien listalla viestii myös jutun asemasta suosittuna muiden ihmisten keskuudessa, eli siihen liittyy sosiaalista informaatiota. Tässä tapauksessa kokemuksen väärentäminen kohdistuu juuri tähän. Kehys, jossa informaatiota tulkitaan perustuu oletukseen, että muut ihmiset ovat omalla toiminnallaan nostaneet tietyn tekstin luetuimpien listalla kärkipaikoille. Ihmiset käyttävät usein muiden toimintaa tiedonlähteenä oman toimintansa suhteen ja se voi osaltaan vaikuttaa myös sisällön arviointiin (e.g. Salganik, Dodds, & Watts, 2006; Knobloch-Westerwick, Sharma, Hansen, & Alter, 2005). Paljon luettu artikkeli voidaan tulkita sisällöltään ja näkökulmaltaan validiksi ja suosionsa perusteella tärkeäksi. Algoritmi toimi tilanteessa niin kuin se oli rakennettu: sen kannalta jokainen klikkaus oli yhtä aito kuin mikä tahansa muu. Se mikä tälle algoritmille on relevanttia dataa on ihmisen valinta. Klikkauksen ajatellaan symboloivan kiinnostusta tai muuta mahdollisesti positiivista suhtautumista tiettyyn kirjoitukseen. Tässä tapauksessa paljastui, että jos klikkausmäärä on se, minkä ajatellaan olevan objektiivinen mittari, niin klikkaus ei itsessään aina tarkoita ihmisen klikkausta ja intentio klikkauksen takana ei aina ole selvä.

Etelä-Saimaa paljastaessaan epäilyttävän verkkoliikenteen purki, Goffmanin termejä käyttäen, kehyksen joka oli botteja käyttäen rakennettu Jani Mäkelän mielipidekirjoitusten ympärille. Koko tapaus on osuva kuvaamaan, kuinka haavoittuvainen jopa hyvin yksinkertaisten mittareiden perusteella rakennettu kokemus voi olla, miten algoritmeja on mahdollista manipuloida omien intressien edistämiseksi, ja toisaalta kuinka fabrikoituja kehyksiä on mahdollista purkaa.

Kirjallisuutta:

Goffman, E. (1986). Frame analysis: An essay on the organization of experience. Harvard University Press.

Knobloch-Westerwick, S., Sharma, N., Hansen, D. L., & Alter, S. (2005). Impact of popularity indications on readers’ selective exposure to online news. Journal of Broadcasting & Electronic Media, 49(3), 296–313.

Salganik, M. J., Dodds, P. S., & Watts, D. J. (2006). Experimental study of inequality and unpredictability in an artificial cultural market. Science, 311(5762), 854–856.

Algoritmitutkimuksesta yleisemmin:

Gillespie, T. (2012). The relevance of algorithms. Media Technologies: Essays on Communication, Materiality, and Society, (Light 1999), 167–194. http://doi.org/10.7551/mitpress/9780262525374.003.0009

Kitchin, R. (2016). Thinking critically about and researching algorithms. Information, Communication & Society, 1-16.

DCCS syyskuussa: aihemallinnusta sekä algoritmejä

Syyskuun viimeisenä perjantaina, tieteiden yön iltapäivällä, Digital Citizens, Communities, and Society kokoontui pohtimaan yhteiskuntatieteen ja tieto- ja viestintäteknologian rajamaastoa. Meillä oli kaksi vuorovaikutteista johdantoa, joita pyrin hiukan tiivistämään blogin muotoon.

Uusia menetelmämahdollisuuksia

Tuukka Ylä-Anttila puhuiaihemallinnuksesta (topic modeling) sosiologin työvälineenä, esitellen kolmea projektia: kehysanalyysiä ilmastopoliittisesta keskustelusta, poliittisten keskustelujen hakemista Suomi24-keskustelualueelta sekä MV-lehden sisällön luokittelua

Lyhyesti, aihemallinnuksessa algoritmi luokittelee sanoja sekä “dokumentteja” esiintymisien mukaan ryhmiin ohjaamattomasti. Yhteiskuntatieteilijä voi käyttää mallia keskustelunaiheiden luokitteluun, mutta suuri kysymys on, onnistuuko keskustelun tapojen kuten kehysten tai diskurssien luokittelu.

Käytimme varsin paljon aikaa pohtimalla miten aihemallinnukset tulisi validoida ja –  ainakin itse – valitin kunnon ohjekirjan puuttumista tälle osa-alueelle. Ylä-Anttila kolleegoineen ovat dokumentoineet prosessin, jossa ensin arvioidaan aihemallinnuksen sanapilviä, minkä jälkeen arvioidaan aiheissa olevien dokumenttien sisältöjä ja tarkennetaan aihetulkintaan jos se on tarpeen. Lähestymistapa kuulosti varsin toimivalta, jäänkin kuuntelemaan mitä mieltä vertaisarvioitsijat ovat siitä.

Toisaalta, myös aiheiden tulkinta herätti huolta: voivatko kyseessä olla framet, diskurssit tai mitkään muut yleisesti käyttämät teoretisoinnit sisällöstä. Tätä ei myöskään helpota, kuten Tuukka muistutti, että framestakin on useampia erilaisia merkityksiä ja tulkintoja yhteiskuntatieteessä. Itse pohdiskelin ääneen, että miksi aiheita pitäisi sanoa joksikin muuksi kuin aiheiksi, mutta Tuukka nopeasti vastasi, että tuo pohdinta liittyy siihen, mihin aiempaan tutkimustraditioon sitten itse sijoittuu. Teoreettisilla käsitteillä on pitkät juuret, jotka vaikuttavat niiden tulkintaan.

Tämä lieneekin valtavirtaistuksen suurin ongelma, jollain tavalla laskennalliset menetelmät ja niiden tulokset pitäisi saada puhumaan traditionaalisten yhteiskunnallisten menetelmien kanssa. Tällöin yhteinen terminologia esimerkiksi auttaa jo varsin paljon, helpoittaa valtavirta-yhteiskuntatieteilijän pohdintaa tulosten järkevyydestä ja merkittävyydestä.

Aiheesta lisää sekä muutama uudehko opinnnäytetyö

Algoritmit sosiaalisessa vuorovaikutuksessa

Jesse Haapoja kertoi juuri jättämästään Helsingin yliopiston jatko-opintosuunnitelmasta, algoritmeistä sosiaalipsykologian kannalta. Hänen keskeinen argumenttinsa on (tai, ehkä paremminkin, minun tulkinta hänen ajatuksestaan), että teknisillä järjestelmillä on toimijuutta mikrotasolla vuorovaikutukstilanteilla – näkökulma joka vielä toistaiseksi puuttuu isoista algoritmien vallankäytön keskustelusta. Algoritmit ja tekniset järjestelmät mahdollistavat ja rajoittavat ihmisten välistä vuorovaikutusta, Tinderin deittaussovelluksesta Pokémon Go:n algoritmin päättämiin vuorovaikutuspaikkoihin.

Jessen tavoite tutkimuksessaan on havainnoida kuinka algoritmit tulevat esille mikrotasolla ihmisten välisessä vuorovaikutuksessa sekä ajatella, miten ihmiset reagoivat algoritmien toimintaan. Eräs esimerkki on vaalikoneet, joiden algoritmit eivät vain neuvo meitä äänestämään vaan myös rakentavat poliittista identiteettiä.

Mikä on oikein ja mikä väärin?

Viimeisenä aiheena eräs pro gradu-työn tekijä Matti Autio esitteli pohdintaansa Facebookin kaupunginosa-ryhmien toiminnasta ja siellä esiintyvästä rajoittavasta sekä yhdentävästä viestittelystä. Hänen suurin kysymys oli tutkimuseettinen: saako tätä tutkimusta oikeastaan tehdä ja voiko gradussa olla lainauksia näistä ryhmistä ja saako ryhmiä edes tutkia.

Tämä herätti laajaa keskustelua DCCS-ryhmässä, tutkimuseettinen pohdinta on vielä kesken. Johtopäätöksemme taisi olla, ettei isojen ryhmien tutkimisessa ollut isompia ongelmia, mutta lainaukset olisi hyvä tarkistaa jokaiselta osallistujalta erikseen. Vaikka verkon tutkimusta onkin tehty jo useampi vuosikymmen, samat eettiset kysymykset ovat edelleen avoinna. Lopuksi päädyimme suosittelemaan vielä opiskelijaa tarkastaman Internet-tutkijoiden AOIRn eettisen toimikunnan ohjeita aiheesta.