Politiikkaa ja demokratiaa käyttöliittymätutkimuksen näkökulmasta

Politiikka ja demokratia ovat hankalia termejä: ne voivat viitata niin valtiomuotoon, päätöksentekojärjestelmään, yhteisesti sovittuihin sääntöihin, organisaation toimintaan tai vaikka mihin muuhun. Viimeistään nyt on ilmeistä kaikille, että teknologiat vaikuttavat siihen, kuinka demokratia toimii ja politiikka muotoutuu. Ajankohtaisista esimerkeistä mainittakoon presidentti Trumpin sosiaalisen median aktiivisuus ja markkinointi tai kansalaisaloitteiden keräämiseen tarkoitettu verkkoalusta.

Tutkimuskirjallisuudessa teknologian ja demokratian sekä politiikan yhteys on toki ollut esillä jo pitkään. Esimerkiksi Dahlberg (2001) sekä Becker (2001) molemmat kuvittelivat, että teknologia voi parantaa demokraattista osallistumista ja mahdollistaa avoimemman sekä keskustelevamman kansalaisosallistumisen. Toisaalta, esimerkiksi Hindman (2009) on korostanut uuden teknologian mahdollisesti haittaavan demokraattisen yhteiskunnan kehittymistä esimerkiksi hakukoneiden ottaessa vallan informaation välityksestä. Tätä kirjallisuutta on runsaasti ja kolme lähdettä ei tee kunniaa kaikille ajatuksille, joita on esitetty. Minua kiinnosti kuitenkin tarkemmin tietyn tieteenalan – käyttöliittymätutkimuksen – näkökulma tähän tematiikkaan. Käyttöliittymätutkijoilla on keskeinen rooli teknologian ja ihmisten välisen vuorovaikutuksen tutkimisessa, jolloin teknologian ja yhteiskunnan välinen vuorovaikutus olisi varmaan heille kiinnostava aihepiiri.

Yhteensä erilaisilla politiikka- ja demokratia-avainsanoilla artikkeleita löytyi noin 500 kappaletta ACM Digital Librarystä. Tämä voi tuntua paljolta, mutta 1980-luvun alusta syntyneelle yhteisölle artikkelit ovat kuin tippa meressä ja muodostavat noin prosentin käyttöliittymätutkimuksen kokonaisjulkaisuista. Esimerkiksi sosiaalista mediaa on tutkittu noin 1200 artikkelin voimin ja tekstin syöttämistä päälle 300 artikkelin voimin. Systemaattisesti luokittelemalla tunnistin politiikka- ja demokratia-kirjallisuudesta 14 erilaista lähestymistapaa politiikkaan.

Selkeästi isoin ryhmä oli akateemisen yhteisön ylläpitämiseen keskittyneet artikkelit, esimerkiksi työpatjakuvaukset, paneelit ja muut keskustelutilaisuudet. Myös yllättävän monissa esipuheissa mainitaan politiikka sanana, mikä ilmaisee yhteisön mielenkiintoa poliittisia aiheita kohtaan. Ei ole kuitenkaan täysin ilmeistä, johtaako tämä yleinen mielenkiinto akateemiseen tutkimukseen.

Samoin politiikka ja demokratia sallivat käsittelyn monista näkökulmista. Toisaalta, politiikalla voitiin viitata organisaatioihin ja niissä tapahtuvaan sisäiseen politikointiin tai kansalaisjärjestöihin poliittisina toimijoina. Samaan aikaan julkisten palveluiden tuottaminen ja palautteen antaminen tai julkisten palveluiden saavutettavuus ovat myös kysymyksiä demokratiasta ja politiikasta.  Politiikkaan liittyy olennaisesti myös kommentaarit mitä erilaisimmista policyistä käyttöliittymätutkimuksen alalla.

Edelliset esimerkit jo osoittavat, että aihepiirit ovat hyvin erilaisia ja niillä ei välttämättä ole kovinkaan paljon tekemistä toistensa kanssa. Myös teknologian saatavuuden paraneminen (demokratisoituminen) sekä keskustelu arvoista, yhteiskunnasta ja teknologiasta liittyvät artikkelihaussa demokratiaan ja politiikkaan.

Sosiaalinen media on tietysti osana analyysiä, sen voi nähdä jopa kolmena erilaisena lähestymistapana. Tutkijat ovat keskittyneet poliittiseen viestintään eli tutkineet miten sosiaalinen media toimii esimerkiksi vaalien tai muiden isojen poliittisten tapahtumien alla. Toisaalta, menetelmällisesti painottuneet tutkijat liittyvät politiikkaan ja demokratiaan varsin vähäisesti: poliittinen keskustelu muodostaa heille hyvän aineiston, johon soveltaa uusimpia (koneoppimis)menetelmiään ja miettiä niiden toimivuutta. Lisäksi uutisten valikoivasta lukemisella on selvästi oma yhteisönsä.

Kaiken tämän keskellä on vielä kaksi kirjallisuusryhmää, jotka yhteiskunnan vaikuttamisen kannalta ovat mielenkiintoisia. Jotkut tutkijat ovat miettineet, miten teknologia voisi tukea naapurustoja ja niihin osallistumista. Toisaalta, osa tutkijoista on keskittyneet pohtimaan osallistumisen teknologista tukemista ja käyttöliittymätutkimuksen mahdollisuuksia siinä.

Mitä tästä kaikesta siis voi sanoa? Päänsäryn lisäksi kirjallisuuskatsaus näyttää, että demokratian ja politiikan sateenvarjo on käyttöliittymätutkimuksessa varsin laaja. Tämä ei ole välttämättä yllätys, mutta käsitteiden – kuten ”civic engagement” käyttö eri konteksteissa voi sotkea akateemista yhteisöä ja haitata omalle tutkimukselle keskeisten artikkelin löytämistä.

Olen nyt käymässä läpi tarkemmin kirjallisuutta osallistumisen tukemisesta. Mitä osallistumisen tutkimuksen yhteisö voisi oppia käyttöliittymätutkijoilta ja toisaalta mitä käyttöliittymätutkimusyhteisö voisi hyötyä yhteiskuntatieteestä? Puhun näistä ajatuksista tarkemmin 11.4. maksuttomassa HY+aamu-tilaisuudessa.

 

Kuplista ja niiden ehkäisemisestä

Teksti perustuu minun, Salla-Maaria Laaksosen ja Bryan Semaanin artikkelikäsikirjoitukseen. Koska akateeminen julkaisu on hidasta, päätin kirjoittaa  tiivistetyn version jo nyt blogimuodossa – onhan tuloksia jo esitelty Rajapinta-meetupeissa. Huomautettakoon, että tekstin näkökulma voi olla monelle yhteiskuntatieteitä edustavalle rajapintalaiselle hiukan outo, koska artikkelin pääyleisönä on käyttöliittymätutkijat.

Kuplien ja polarisaation tutkimiselle on pitkät perinteet myös verkkotutkmuksessa. Vuoden 2004 Yhdysvaltojen vaaleja tutkineet Adamic & Glance (2005) havaitsivat, että demokraattiblogaajat linkkaavat enemmän demokraattilähteisiin ja vastaavasti republikaaniblogaajat republikaanilähteisiin. Vastaavia tuloksia on saatu myös esimerkiksi Gilbertin yms. (2009), Jacobsonin ym. (2016) sekä Merazin (2015) tutkimuksissa.

Myös käyttöliittymätutkijat ovat lukeneet samoja artikkeleita ja alkaneet pohtia, kuinka polarisaatiota voisi teknologiaa kehittämällä vähentää. Tutkimusta on tehty varsin runsaasti. Esimerkiksi Park et al. (2009) ja Munson et al. (2009, 2010, 2013) ovat pyrkineet vaihtamaan uutisten suosittelun tukemaan erilaisten näkökulmien esittelyä. Suosittelu voi myös tapahtua suosittelemalla ihmisille muita ihmisiä joiden näkökulmat ovat aiheeseen voisivat olla erilaisia (esimerkiksi Garimella, 2016, 2017). Artikkelissamme kutsumme tätä vallitsevaksi lähestymistavaksi jonka haluamme haastaa (englanniksi common design agenda).

Empiirinen esimerkki: toimisiko vallitseva lähestymistapa?

Tutkimme Suomessa melko tuoretta, selvästi polarisoitunutta ilmiötä: maahanmuuttokeskustelua. Käytämme aineistona viittä maahanmuuttoa kannattavaa ja viittä maahanmuuttoa vastustavaa Facebook-yhteisöä ja niissä tapahtuvaa linkkien jakoa. Ilmiön kuvaamiseksi teimme verkostoanalyysin, jossa sivuston ja ryhmän vällle syntyy yhteys aina, kun kyseisessä ryhmässä on jaettu jokin kyseisen sivuston alla oleva linkki. Kuten verkostokuvastä näkee, aiemman tutkimuksen havaitsema polarisaatioilmiö on havaittavissa tässäkin keskustelussa: ryhmille yhteisiä sivustoja on vain kourallinen eli ryhmien keskelle jäävät verkoston solmut. Valtaosa jaetuista sivustoista on kullekin ryhmälle erillisiä.

network2
Linkit maahanmuuttoa vastustavissa (A1-5) ja kannattavissa (P1-5) ryhmissä. Aineisto on analyysissa täysin anonymisoitu, eli yksittäisiä käyttäjiä ei voi tunnistaa.

Jos seuraisimme aiemman tutkimuksen johtopäätöksiä, kuvaaja voisi johtaa ajatukseen, että ryhmille voisi tehdä hyvää välillä lukea samoja lähteitä ja ehkä löytää yhteistä maaperää tätä kautta. Aineistossa havaittiin, että noin kaksi prosenttia linkeistä ovat täysin samoja sekä kannattavissa että vastustavissa ryhmissä, eli näiden linkkien sivustot ovat mahdollisia yhteisen maaperän löytymiselle.

Päätimme kuitenkin tarkastella hiukan syvemmälle ja analysoida, mitä näiden yhteisten linkkien alla tapahtuu. Linkken alla olevien Facebook-kommenttien analyysi osoittaa, että yhteistä maaperää ei löytynyt. Linkkien alla varsin usein dissattiin hyvinkin julmasti sitä “toista puolta” – niin maahanmuuttoa vastustavissa kuin sitä kannattavissa ryhmissä. Keskustelu oli hyvin etäällä yrityksistä ymmärtää toisten näkökulmia.

Tulos ei välttämättä ole yllättävä ja uusin poliittinen psykologia (esim. Washburn, painossa) kuvaa, kuinka jopa tilastojen lukeminen värittyy lukijan ennakkokäsityksien kautta. Tästä huolimatta  ajatus yhteisen maaperän luominen esimerkiksi jaettujen linkkien avulla on keskeinen oletus vallitsevassa lähestymistavasssa.

Mitä sitten?

Analyysimme perusteella on selvää, että esitetty yksinkertainen eri uutislähteiden suosittelu sellaisenaan ei riitä. Käyttöliittymätutkimuksessa on palattava työpöydän ääreen ja mietittävä, missä määrin teknologialla voidaan välttää yhteiskunnan polarisaatiota ja mitä vaikutuksia sillä lopulta voi olla. Tämä on selkeästi kutsu rajapintaiselle teknologian ja yhteiskuntatieteen välissä olevalle tutkimukselle jossa voitaisiin huomioida niin teknologian syvällinen ymmärtäminen ja jopa teknologiakonstruktiivinen tutkimusote kuin myös yhteiskuntatieteen kautta ymmärrys ihmisen monimutkaisuudesta.

Käyttöliittymäsuunnittelu voisi lähteä rohkeasti kokeilemaan erilaisia lähestymistapoja pelkän mediadieetin laajentamiseen asemesta. Alla on kolme esimerkkiä siitä mitä voitaisiin esimerkiksi tehdä. Ensimmäisessä koetetaan rakentaa suosittelua heikkojen yhteyksien kautta. Toisessa pyritään tuomaan uutisesta jo käytävää keskustelua ja sitä kautta eri näkemyksiä enemmän esille. Kolmannessa tarjotaan uutisten jakajille vihjettä, että samaan aiheeseen on esitetty monta näkökulmaa.

Nämäkään lähestymistavat eivät välttämättä toimi. Pahimmillaan ne voivat vain aiheuttaa enemmän antisosiaalista toimintaa ja pahaa mieltä. Siitä huolimatta olisi tärkeää, että design-vetoinen käyttöliittymätutkimus tutkisi myös vallitsevaa lähestymistapaa haastavia ratkaisuja pohtisi mitä kaikkea voitaisiin tehdä tämän yhteiskunnallisen ongelman ratkaisemiseksi.

 

Ohjelmoinnin opetusta yhteiskuntatieteilijöille Helsingissä – jotain ajatelmia

English version available at Science & Industry, Matti’s personal blog.

Ensimmäinen Helsingin yliopiston Programming for social science kurssi pidettiin syksyllä 2014. Silloin ei ollut kovinkaan monia kursseja, joista katsoa mallia suunnittelun avuksi. 2014 jälkeen olen muuttanut kurssia ja yrittänyt mielestäni parantaa sitä. Esimerkiksi kurssin harjoitustehtäviä on muokattu yhteiskuntatieteitä käsitteleviksi (kevät 2015syksy 2016). Nykyisin ohjelmointi, yhteiskuntatiede ja ´data science’ on paljon trendikkäämpää kuin vuonna 2014. Esimerkiksi SAGE Publishing on SAGE Campuselleen luonut kurssin ohjelmoinnista videomateriaaleineen ja kertomuksineen (selkeyden vuoksi: pääsin käyttämään materiaalia ilmaiseksi arviointitarkoituksissa).

Koska ohjelmointi ja ‘data science’ ovat tällä hetkelä trendikkäitä, ajattelin, että nyt voisi olla hyvä hetki vähän kelata omaa opetustani ja sen kehittymistä. Uskon, että on olemassa (vähintään) kaksi erilaista tapaa opettaa ohjelmointia: tietojenkäsittelytieteellinen ja soveltava. Tietojenkäsittelytieteellinen lähestymistapa näkyy parhaiten eri yliopistojen “Johdatus ohjelmointiin”-kursseilla, missä koko tematiikkaa lähestytetään tietojenkäsittelytieteen perinteestä. Soveltava tyyli sen sijaan yrittää integroida ohjelmoinnin jonkin oppiaineen soveltavaan kontekstiin. Esimerkiksi Guzdialin (2003) kurssi keskittyi ohjelmoinnin opettamiseen media-alalle ja keskittyikin esimerkiksi kuvien automaattiseen käsittellyn. Samalla tavalla Sullivanin (2013) datavetoinen kurssi painotti laskennallista aineiston käsittelyä.

Ensimmäinen, syksyn 2014, kurssi oli ehdottomasti tietojenkäsittylytieteellinen. Teimme kaikki perinteiset tietojenkäsittelytieteen tehtävät, mukaanlukien Fizz-Buzz ja alkulukutestaus. Ovat samoja tehtäviä, millä minut on aikanaan opetettu. Jo silloin käytössä oli artikkeleita, jotka yrittivät vähän taustoittaa siitä, miten laskennallisia menetelmiä voidaan soveltaa yhteiskuntatieteissää. Kuitenkin, kurssin lopulla kuulin palautteessa, ettei ohjelmoinnin ja yhteiskuntatieteen välinen yhteys ollutkaan niin selvää, kun ajattelin sen olevan.Vähän kerrallaan, usean vuoden aikana kasvatin soveltavien tehtävien määrää. Soveltavat tehtävät pohjautuvat jotenkin yhteiskuntatieteellisiin ongelmiin, mutta yksinkertaistetussa muodossa. Tänä vuonna kokeilen liittää kaikki tehtävät yhteiskuntatieteen kannalta kiinnostavaan aineistoon ja kontekstiin. Kuten aiempinakin vuosina, luemme myös useita empiirisiä tapaustutkimuksia.

Katsotaan mitä tapahtuu tällä kertaa ja opitaan taas seuraavaan kertaan.Ja miten tämä kaikki liittyi SAGE Publishingingiin? Heidän uusi materiaalinsa pyrkii samaan tavoitteeseen kuin minä: tukemaan yhteiskuntatieteilijöiden ohjelmointia. Raktenteensa osalta kurssi on selkeästi rakennettu tietojenkäsittelytieteellisestä perspektiivistä. Rakenne seuraa hyvin perinteistä ohjelmointikurssia: ohjelmointiympäristön käyttö, muuttujien toiminta, kontrollirakenteet ja huomioita hyvistä toimintatavoista. Lisäksi on selvästi on enemmän soveltajille mielenkiintoista sisältöä, erityisesti verkkosivujen käsittely. Tekijöillä on kuitenkin ollut mielessä yhteiskuntatieteljät ja yhteiskuntatiedettä on koitettu tuoda osaksi sisältöä erillisillä “Application to Social Science”-laatikoilla. Valitettavasti ne eivät mielestäni olleet sisällöllisesti mitenkään mullistavia:

Ohjelmoinnin osalta materiaali on erittäin hyvätasoista. Videot ovat hyvin tehtyjä ja selkeän oloisia. Kuitenkaan mielestäni valmis itsenäiseksi materiaaliksi, vaan toimii yhteiskuntatieteellisen kurssin rinnalla jossa

  • on enemmän käytännön harjoituksia ohjelmoinnista, jotta yleisen tason ymmärrys ohjelmoinnista muuttuisi osaamiseksi
  • enemmän kertomusta laskennallisen tutkimusprosessin yhteydestä yhteiskuntatieteisiin ja sen käsitteisiin ja tukea ohjelmoinnin käyttöä tutkimusmenetelmänä

Tämän kaltaisella kurssilla on kuitenkin – kokemukseni mukaan – usein jonkun käsikirjan ohjelmoinnin opettamisesta. Internet toki on pullollaan näitä materiaaleja, mutta niistä tulee herkästi tilkkukäkkimäinen kokoelma erilaisia lähestymistapoja. Ja tämä ei toki ole systemaattinen ja myös aika sekava. SAGEn kurssi voisi toimia systemaattisempana mateiraalina tälläiselle kurssille.

Algoritmit uutisissa: ensimmäisiä havaintoja

Minua kiinnosti kuinka suomenkielisessä mediassa puhutaan algoritmeistä, tekoälystä ja koneoppimisesta; tuosta tämän päivän maagisesta taikuudesta. Ensimmäinen yllätykseni on, että ensimmäinen osuma varsin laajassa media-aineistossamme on vuodelta 1994! Noin muutekin hämmennyin kun Aamulehden uutisoinnissa ei ole selkeää tihentymää tai määrän kasvua – uutisointi on ollut erittäin aktiivista jo vuodesta 2000. Yleisradiolla sen sijaan nähdään selvästi, kuinka uutisointi on kasvanut noin 2012 vuodesta erittäin paljon, mutta sitä ennen uutisissa nämä taikasanat ovat olleet enemmänkin sivuhuomioita.

Screenshot 2017-07-12 16.42.20
Aamulehden uutiset missä on sana algoritmi, tekoäly tai koneoppiminen
Screenshot 2017-07-12 16.42.09
Yleisradion uutiset missä on sana algoritmi, tekoäly tai koneoppiminen

 

Havaitsimme Aamulehden olleen poikkeuksellisen aktiivinen algoritmiuutisoinnissaan jo 2000-luvun alkupuolella, kun Yle siitä villiintyi vasta 2010-luvun puolella. Selvää kuitenkin on, että 2010-luvulla algoritmeistä puhutaan merkittävästi enemmän kuin 2000-luvulla.

Aiheiden osalta käytimme aina yhtä trendikästä aihemallinnusta ja uutisaineistosta löytyikin 41 erilaista aihetta – jotka selkeyden takia luokittelimme kymmeneen ryhmään:

  1. Pelit ja peliarvostelut
  2. Tekniikan kehitys, esimerkiksi itsestään ajava auto sekä tekoäly
  3. Elokuvat, viihde ja taide
  4. Kaupalliset palvelut ja niiden algoritmit
  5. Tutkimus algoritmeistä
  6. Tietoturvallisuus
  7. Ohjelmoinnin opetus peruskoulussa
  8. Työllisyys ja työelämän murros
  9. Algoritmien kaupallinen arvo
  10. Algoritmit ja maailmanpolitiikka
timeline.png
Algoritmit uutisissa teemoittain

Havainnoimalla eri teemojen näkyvyyttä mediassa huomaamme, että 2000-luvun alusta tähän päivään on tapahtunut siirtymä viihteistä ja peleistä erityisesti kaupallisten palveluiden algoritmien pohdiskeluun ja esimerkiksi algoritmien vaikutukseen työelämässä.

Temaattinen muutos on tervetullut algoritmisten järjestelmien yhteiskunnallisen merkittävyyden takia, mutta yhteiskuntatieteissä juuri nyt trendikäs kriittinen algoritmitutkimus ei ainakaan tämän analyysin perusteella ollut erityisesti esillä. Ehkäpä peruskoulun ohjelmointiopetuksessa kannattaisi käyttää myös muutama tunti pohtimaan teknologian valtaa eikä vain yrittää oppia ohjelmoinnin alkeita?

Kiitämme Yleisradiota sekä Alma mediaa tutkimukseen käytettyjen aineistojen tuomisesta käyttöömme. Perinteisestihän Suomessa on aina tutkittu Helsingin Sanomia, mutta heidän kautta media-aineistoa ei ole saatavilla.

Varovaisuutta aihemallinnuksen kanssa

Varovaisuutta aihemallinnuksen kanssa

Eräs laskennallisten menetelmien tällä hetkellä suosituin sovellus on aihemallinnus eli topic modeling. Se mahdollistaa laajojen tekstiaineistojen jakamisen ryhmiin ja tällä tavalla “kaukoluvun” aineistosta. Tietenkään sen ei koskaan ole tarkoitus korvata aineiston lähilukua (esim. Grimmer & Stewart, 2013), mihin voi käyttää vaikka etnograafisia menetelmiä.

Eräs valinta aihemallinnuksesta on aiheiden määrän, eli tutummin, k:n valinta. Kirjallisuudessa usein esiintynyt tapa tähän on katsoa muutama eri arvo ja valita näistä selkeiten tulkittavissa oleva. Kritisoin tapaa jo marraskuun Rajapinta-meetupissa. Yksinkertainen koeasetelma näytti kuinka ihmisten mielipide selkeydestä vaihtelee merkittävästi.

Aihemallinnus: tuloksia eri k:n arvoilla
Alustava luokitus aineiston sisällöstä eri aihemallinnuksilla. Katso vain kuva.

Kuvassa näemme kuinka niiden tulkinnat myös tuottavat hiukan erilaisia näkemyksiä aineistoista. (Varoitus: nämä ovat vielä alustavia nimiä, eli en ole vielä itse täysin tyytyväinen näihin.) Olen pyrkinyt ryhmittelemään aineiston niin, että samanteemaiset aiheet olisivat samalla rivillä.

Kuvasta nähdään esimerkiksi kuinka aiheiden määrän lisääntyminen kahteenkymmeneen aiheeseen selkeästi tuo jotain uusia ajatuksia aineistoon, erityisesti alueelisuuden ja globalisaation. Toisaalta aiheena esimerkiksi suomalaisuus on osassa malleissa mukana ja osassa ei, mikä luultavasti kuvaa aihemallinnusprosessissa olevaa satunnaisuutta. Toisaalta 26 ja 30 aiheen mallit tuovat esille taloudellisuuden, perusturvan sekä edustuksellisuuden aiheita.

Aihemallinnuksen soveltajille uutiset ovat valitettavia: en itse pitäisi sopivana ajaa aihemallinnusta teoreettisesti mielekkäällä lukumäärällä tai tutkimalla muutamaa eri aihemäärää. Riskit vääristä tulkinnoista ovat ilmeiset näissä tapauksissa. Sen sijaan pitäisin itse toivottavana aihemäärän valitsemista laskennallisin kriteerein, kuten log-likelihood arvoja käyttämällä. Vaikka näistäkin käydään ritstiriitaista keskustelua, tämä silti vähentäisi tiettyä epävarmutta mikä nykyiseen käytäntöön tulee.

Erityiskiitos Koneen Säätiölle tutkimuksen tukemisesta sekä Tieteen tietotekniikan keskus CSClle laskenta-ajasta.

Kuinka normatiivisia teorioita voisi hyödyntää käyttöliittymätutkimuksessa?

Kuinka normatiivisia teorioita voisi hyödyntää käyttöliittymätutkimuksessa?

Slide27Tieteen ja teknologian tutkimuksessa on jo pitkään ymmärretty, että tekniset välineet sisältävät myös arvoja (esim. Nissenbaum, 2005)⁠. Jokainen järjestelmä on eräs valinta useista eri vaihtoehdoista ja mahdollisuuksista järjestelmän suunnittelussa (esimerkiksi Liste & Sørensen, 2015)⁠. Käyttöliittymätutkimuksessa onkin nostettu esille arvojen rooli osana suunnitteluprosessia. Esimerkiksi arvotietoiset suunnitteluprosessit (value sensitive design) perustuvat arvojen parempaan esilletuontiin suunnittelutyön aikana sekä ratkaisemaan mahdollisia arvoristiriitoja. Arvoja voisi kuitenkin käyttää laajemminkin käyttöliittymätutkimusessa – ne tarjoavat mahdollisuuden integroida teoriaa ja empiiristä tutkimusta. “Uuden” teknologian tutkimus kaipaakin tarkempaa teoriaotetta – jopa 70% yhteiskuntatieteellisestä tutkimuksesta oli teoriatonta (Borah, 2015)⁠; samanlaista vertailua ei ole toistaiseksi tehty käyttöliittymätutkimusyhteisöissä, mutta uskon, ettei tulos olisi merkittävästi parempi. Jotta tutkimus siirtyisi pois kuvailevata ja uusimman teknologian perässä juoksevasta tutkimuksesta keskeisempiin kysymyksiin, olisi mielestäni aika ryhdistäytyä ja pohtia teorian roolia osana tutkimustyötä.

Mutta, mikä oikeastaan on teoria? Yhteiskuntatietelijänä huomasin aikaa sitten, että teoria voi olla monelaisessa muodossa. Ennustavat ja selittävät teoriat pyrkivät kuvaamaan yhteyksiä, kun taas kuvailevat teoriat auttavat käsitteellistäään (ja usein jargonisoimaan) ilmiötä. Normatiiviset teoriat taas keskittyvät pohtimaan, että miten asioiden pitäisi olla. Ennustaville, selittäville ja kuvaileville teorioille on paljon ohjeita, mutta normatiiviset teoriat ovat – ainakin minulle – vielä piikki lihassa. Miten normatiivisia teorioita voisi esimerkiksi validoida? Kuitenkin, pidän normatiivisista teorioista koska niissä tuodaan selkeästi esille tutkijan subjektiivinen asema. Tutkija kun ei ole neutraali toimija vaan tutkijan asenne ja näkemykset vaikuttavat niin tutkimuskysymyksen valitaan kuin aina välillä myös tuloksiin. Normatiivissa teorioissa arvot on jo sisällytetty teoriaan itseensä.

Ratkaisuna normatiiviseen teoriaan pohjautuva tutkimus

Sovelsimme Harmasilaista maailmankuvaa julkisesta tilasta ymmärtääksemme tietokoneavusteista viestintää luokkahuoneessa. Havaitsimme, että tietokonevälitteinen viestintännässä on useampia osallistuja verrattuna kasvoikkain tapahtuvaan ryhmäkeskusteluun. Habermasilaista maailmankuvaa noudatellen, osallisuuden lisäksi myös toisten ihmisten arvostaminen sekä rationaalinen keskustelu ovat tärkeitä. Muiden osallistujien arvostamisessa emme havainneet merkittävää eroa muotojen välillä, mutta rationaalisen keskustelun osalta kasvokkain tapahtuva keskustelu oli parempaa. Työn mielenkiintoinen paino ei kuitenkaan ole täysin tässä teoriassa, vaan laajempi pohdinta kietoutuu normatiivisen teorian hyötyjen ympärille.

Normatiivisen teorian ensimmäinen hyöty tulee siitä, että se on teoria. Kuten muihinkin teorioihin, siihen liittyy monia menetelmällisiä ja empiirisiä havaintoja. Esimerkiksi deliberatiivisen teorian kautta käytössämme oli useita validoituja mittareita arvioidaksemme osallistumisen habermasilaisuutta. Lisäksi julkisen tilan käsitteestä on kirjoitettu jopa tietojenkäsittelytieteessä ja tätä kautta tutkimukselle syntyi ympäristö, johon se pystyi sitoutumaan. Tutkimus samassa tilassa olevien henkilöiden tietokonevälitteisestä viestinnästä on ollut varsin hajanaista ja aiheiltaan jopa poppivaa. Normatiivisen teorian kautta sille muodostui kuitenkin mielekäs ympäristö; hajanaisen tutkimuksen sai kursittua kasaan.

Käyttöliittymätutkimus ei ole vain empiiristä, vaan myös konstruktiivistä – vaihtoehtoisia tietokonelaitteita ja ohjelmia luovia. Normatiivisen teorian toinen hyöty onkin nimenomaan konstruktiiviselle tutkimuselle. Konstruktiivisessa tutkimuksessa isoimpia haasteita on perustella tehtyjä valintoja – mitä on aina useita. Miten tietynlainen käyttöliittymäongelma voitaisiin ratkaista mielekkäästi? Normatiivinen teoria auttaa rajaamaan kaikista mahdollisista suunnitteluvaihtoehdoista merkittävimmät teorian kannalta. Samaan aikaan se voi tukea löytämään uusia inspiraation lähteitä, kun muiden alan tutkijoiden työt voivat puhutella työtäsi selvästi – jopa siinä tilanteessa, että heidän sovelluskohde teorialle saattoi olla etäinen.

Tosin, normatiivinen teoria pakottaa myös tuomaan esille arvot jotka on koodattu kaikkiin teknisiin järjestelmiin. Perinteisin esimerkki on Winnerin (1985) esilletuomat Mosesin sillat – jotka olivat tehty niin mataliksi, ettei tiettyihin kaupungin osiin voinut julkisilla kulkea. Ongelma ei ole täysin tuntematon käyttöliittymätutkimuksessakaan. Arvojen mukaanottamiseksi kehittyi arvopohjaisen käyttöliittymätutkimuksen koulu ja siellä keskeinen kysymys on ollut miten eri käyttäjien arvojen välillä tasapainoillaan. Samalla tavoin normatiivisen teorian kohdalla voi hyvällä perusteella kysyä, millä perusteella tutkijat voivat vain ottaa tietyn normatiivisen aseman ja käyttää sitä tutkimuksessa. Tämä on erityisen huolestuttavaa jos tarkoituksena on muokata järjestelmää tarkemmin jotain arvoja noudatettavaksi – onko se eettistä, että koehenkilöt joutuvat käyttämään järjestelmää, missä arvot ovat voimakkaasti läsnä. Minulla ei ole vielä oikeaa vastausta mahdollisiin arvoristiriitoihin, joten jätetään se tässä välissä oman pohdinnan varaan.

Tiivistelmä: mitä oikeastaan opimme?

Tiivistelmänä – olen viettänyt nyt aika kauan pohdiskellen ja tutkien sanassa tilassa tapahtuvaa tietokonevälitteistä viestintää. Tämän tutkimuksen haaste mielestäni on sen teoreetiton luonne. Tutkimuksemme tavoite oli ehdoittaa mahdollisuuksia muodostaa teoriaa käyttäen normatiivisia teorioita ja näytämme, mitä mahdollisuuksia normatiivisilla teorioilla voisi olla käyttöliittymätutkimuksessa. Jäämmekin odottamaan mielenkiintoisia sovelluskohteita normatiivisille teorioille.

Blogipostaus pohjautuu CHI-konfferenssissa 2017 esitettyyn artikkeliin Nelimarkka, M., Salovaara, A., Semaan, B., & Jacucci, G. (2017). Theory-Driven Collocated CMC. An English version is available in Rajapinta’s Medium.com and Matti’s personal blog.