methods research note

Bitit ja politiikka: Tervetuloa, laskennallinen politiikan tutkimus

Teksti on julkaistu 8.8. ilmestyneessä Politiikka-lehden numerossa 2/2018 "Bitit ja politiikka" -minisymposiumin johdantona.
https://www.flickr.com/photos/videocrab/4630988238/
(cc) Kevin Simpson @Flickr

Tietoyhteiskuntakehitys ja teknologian muutokset ovat vaikuttaneet yhteiskuntatieteisiin, mukaan lukien politiikan tutkimukseen. Digitaalisissa toimintaympäristöissä tapahtuva poliittinen toiminta näyttäytyy houkuttelevana tutkimuskohteena ja toisaalta esimerkiksi digitaalisten alustojen ja algoritmien tutkimus nostaa esille politiikan perimmäisiä kysymyksiä vallasta (esim. Gillespie 2010; Beer 2017; Neyland ja Möllers 2016). Monet kiinnostavista kysymyksistä kytkeytyvät poliittiseen viestintään: sosiaalinen media on jo haastanut perinteisiä viestinnän portinvartijateorioita (esim. Chadwick 2014, Castells 2007) ja uudet digitaaliset viestintävälineet muuttavat kansalaisosallistumisen tapoja (esim. Bennett ja Segerberg 2013; Juris 2012). Myös marxilainen pohdinta on tehnyt paluun alustatalouden myötä tapahtuneen pääoman jakautumisen seurauksena (esim. Spencer 2018). Jo tämä  tutkimusnäkökulmien lyhyt lista osoittaa, että politiikan tutkimusperinteet ovat tärkeässä roolissa myös nykyisen digitaalisen yhteiskunnan aikana.

Digitaalisuus ei muuta vain tutkimuskohteita, vaan myös aineistoja ja menetelmiä. Digitaaliset jalanjäljet (digital trace data) ja massadata (big data) mahdollistavat uudenlaisten kysymysten esittämisen: aiemmin tutkijoilla ei ollut käytettävissä samankaltaisia yksityiskohtaisia ja laajoja aineistoja ihmisten, organisaatioiden ja liikkeiden toiminnasta, vaan tutkimuksessa on turvauduttu havainnointiin, haastatteluihin, kyselyaineistoihin ja rekisteriaineistoihin. Lazerin ja kumppaneiden (2009) mukaan uudet digitaaliset aineistot ja niitä hyödyntävät laskennalliset menetelmät ovat kuin uusi mikroskooppi yhteiskuntatieteelliseen tutkimukseen. Sekä Rob Kitchin (2014) että danah boyd ja Kate Crawford (2012) kehottavat tutkijoita kuitenkin kriittisesti arvioimaan niitä tapoja, joilla tutkimusta tehdään massadatan aikana ja sitä, kuinka laskennalliset menetelmät muokkaavat yhteiskuntatieteellistä tutkimusta. Hyvä esimerkki peräänkuulutetusta kriittisyydestä on Grimmerin ja Stewartin (2013) artikkeli, jossa he perinteisiin laadullisiin lähestymistapohin verraten pohtivat, miten tekstianalyysiä voidaan toteuttaa esimerkiksi sanojen esiintymisfrekvenssejä tarkastelemalla.

Uusien menetelmien ja aineistojen myötä myös muut tieteenalat ovat innostuneet tarkastelemaan yhteiskuntatieteellisiä kysymyksiä. Justin Grimmerin (2015) mukaan laskennallisten menetelmien avulla yhteiskuntatieteellisiä kysymyksiä käsittelevät yhteiskuntatieteilijöiden lisäksi myös datatietelijät, tietojenkäsittelytietelijät ja fyysikot, usein monitieteisissä ryhmissä. Poikkitieteellinen lähestymistapa helposti tukee tietynlaisia institutionalisoituneita politiikan tutkimuksen muotoja. Se voi aiheuttaa esimerkiksi behavioralistisen politiikan tutkimuksen paluun, koska perspektiivin ajatus teoriapohjaisesta mallintamisesta on yhteensopiva perinteisten laskennallisten tieteen osaajien kanssa — eivätkä he tunne behavioralistista politiikan tutkimusta kohtaan esitettyä ansiokasta kritiikkiä. Toisaalta yhteiskuntatieteilijöiden perinteinen koulutus ei ole sisältänyt opetusta laskennallisista menetelmistä ja niiden käytöstä. Siksi yhteiskuntatieteellisen koulutuksen ulkopuolelta on helppo tarjota näkökantoja ja lähestymistapoja yhteiskuntatieteellisten kysymysten käsittelyyn, vaikka ne yhteiskuntatieteellisin silmin voivat näyttää naiiveilta. Hanna Wallach (2018) muistuttaakin tietojenkäsittelytieteilijöille, että yhteiskuntatiedettä ei synny automaattisesti käyttämällä yhteiskuntatieteellistä aineistoa. Vastaavasti Grimmer (2015) argumentoi, että jos haluamme luoda yhteiskuntatieteellisemmän lähestymistavan laskennalliseen yhteiskuntatieteeseen, on välttämätöntä että yhteiskuntatieteilijät ovat mukana tekemässä ja kehittämässä laskennallisten menetelmien käyttöä.

Tämän symposiumin artikkelit ovat esimerkkejä tällaisesta yhteistyöstä ja menetelmäkehityksestä. Symposium koostuu kolmesta toisiaan täydentävästä tekstistä. Kaksi ensimmäistä esittelevät laskennallisten menetelmien käyttöä politiikan tutkimuksen kentällä, kolmas pohtii laskennallisten menetelmien institutionalisoitumista suomalaiseen politiikan tutkimukseen. Tekstit siis omalta osaltaan vastaavat Grimmerin (2015) ehdotukseen pyrkiä muodostamaan selkeämmin yhteiskuntatieteellisesti painottunut näkökulma laskennallisten menetelmien käyttöön ja kehitykseen.

Salla-Maaria Laaksosen ja Matti Nelimarkan artikkeli tutkii digitaalista vaalijulkisuutta vuoden 2015 eduskuntavaaleissa. Tutkimuksessa laskennallisesti analysoidaan vaalien julkisella agendalla olleet teemat ja yhdistetään saatua tietoa toisaalta poliittisen viestinnän agendatutkimuksen teorioihin ja puolueiden aiheomistajuuden analyysiin. Tuukka Ylä-Anttila, Veikko Eranti ja Anna Kukkonen taas käsittelevät katsauksessaan ilmastonmuutoksesta käytyä julkista keskustelua aihemallinnuksen avulla. Kirjoittajat käyvät läpi menetelmän reunaehtoja ja ehdottavat laadullista validointiprosessia, jonka avulla menetelmää voisi käyttää tekstien kehysanalyysina.

Molemmat tekstit tarkastelevat agendan muodostumista laskennallisesti ja osoittavat samalla, että laskennalliset menetelmät voivat tarjota uusia työkaluja poliittisten argumenttien tutkimiseen ja sellaisiin politiikan ja poliittisen viestinnän polttaviin klassisiin kysymyksiin kuten agendan rakentaminen ja teemojen kehystäminen. Ennen kaikkea menetelmät mahdollistavat tällaisen analyysin tekemisen paljon aiempaa laajemmilla aineistoilla. Molemmat tekstit käyttävät menetelmänä ohjaamatonta koneoppimista, tarkemmin aihemallinnusta, mutta sitovat valitun menetelmän perinteiseen yhteiskuntatieteelliseen kysymyksenasetteluun. Lisäksi tekstit käyvät keskustelua laskennallisia menetelmiä soveltavan yhteiskuntatieteen käsitteiden kanssa — nähdäksemme tämä ei ole vain tarpeellinen, vaan myös välttämätön keskustelu.

Professori Pertti Ahonen luo katsauksessaan näkymän laskennallisten menetelmien institutionalisoitumiseen politiikan tutkimuksessa. Hän keskittyy nimenomaisesti laskennallisiin menetelmiin, joita on kehitetty politiikan tutkimuksen institutionalisoituneiden kysymysten tarkasteluun politiikan tutkijoiden toimesta. Ahonen päätyy toteamaan, että laskennallisten menetelmien käyttö politiikan tutkimuksessa on yhä sivupolku, ja varsinkin suomalaisessa politiikan tutkimuksessa melko vähäistä. Ahonen myös aiheellisesti peräänkuuluttaa syvällisempää keskustelua menetelmien filosofisista taustaoletuksista.

Menetelmäkeskustelua onkin yhä syytä käydä, ja sitä tulisi käydä poikkitieteellisesti. Poikkitieteellisyyden haasteeseen on herätty myös tietojenkäsittelytieteilijöiden joukossa (vrt. Wallach, 2018). Oleellista on, että vaikka laskennallisia menetelmiä voi usein soveltaa suoraan “out of the box”, ne eivät ole taikalaatikoita, jotka ratkaisevat aiemmat tutkimukseen liittyvät ongelmat ja luotettavuuskysymykset; laadullista tarkastelua ja teorialähtöisyyttä tarvitaan yhä rinnalle. Robotti ei vie politiikan tutkijan töitä, kuten Tuukka Ylä-Anttila ja kumppanit toteavat analyysinsa päätteeksi – eikä ehkä datatieteilijäkään.

Matti Nelimarkka & Salla-Maaria Laaksonen
Nelimarkka on tutkijatohtori Tietotekniikan laitoksella ja Tietotekniikan tutkimuslaitos HIIT:llä Aalto-yliopistossa ja opettaja Menetelmäkeskuksessa (Valtiotieteellinen tiedekunta, Helsingin yliopisto). Laaksonen on tutkijatohtori Kuluttajatutkimuskeskuksessa (Valtiotieteellinen tiedekunta, Helsingin yliopisto)
Lähteet

  • Beer, David. 2017. The social power of algorithms. Information, Communication & Society 20:1, 1–13.
  • Bennett, Lance ja Segerberg Alexandra. 2013. The Logic of Connective Action : Digital Media and the Personalization of Contentious Politics. Cambridge: Cambridge University Press.
  • boyd, danah ja Crawford, Kate. 2012. Critical Questions for Big Data. Information, Communication & Society 15:5, 662–679.
  • Castells, Manuel. 2007. Communication, Power and Counter-Power in the Network Society. International Journal of Communication 1:29, 238-266.
  • Chadwick, Andrew. 2013. The Hybrid Media System: Politics and Power. Oxford: Oxford University Press.
  • Gillespie, Tarleton. 2010. The politics of “platforms.” New Media and Society 12:3, 347–364.
  • Grimmer, Justin. 2015. We Are All Social Scientists Now: How Big Data, Machine Learning, and Causal Inference Work Together. PS: Political Science & Politics 48:01, 80–83.
  • Grimmer, Justin ja Stewart, Brandon M. 2013. Text as Data: The Promise and Pitfalls of Automatic Content Analysis Methods for Political Texts. Political Analysis 21:3, 267–297.
  • Juris, Jeffrey. 2012. Reflections on #Occupy Everywhere: Social Media, Public Space, and Emerging Logics of Aggregation. American Ethnologist 39:2, 259–79.
  • Kitchin, Rob. 2014. Big Data, new epistemologies and paradigm shifts. Big Data & Society 1:1, 1–12.
  • Lazer, David, Pentland Alex, Adamic Lada, ym. 2009. Life in the network: the coming age of computational social science. Science 323:5915, 721–723.
  • Neyland, Daniel ja Möllers, Norma. 2016. Algorithmic IF … THEN rules and the conditions and consequences of power. Information, Communication & Society 4462, 1–18.
  • Spencer, David. 2018. Fear and hope in an age of mass automation: debating the future of work. New Technology, Work and Employment 33:1, 1–12.
  • Wallach, Hanna. 2018. Computational social science ≠ computer science + social data. Communications of the ACM 61:3, 42–44.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

%d bloggers like this: