Lukemisen datafikaatio ja uskottavuus

Yhä useampi arkipäiväinen toimintamme muutetaan erilaisten digitaalisten välineiden avulla dataksi, jota käytetään erilaisiin laskennallisiin toimiin kuten käyttäytymisemme ennakointiin ja sisältöjen personointiin. Tätä prosessia kutsutaan datafikaatioksi. Ihmiset luonnollisesti tulkitsevat tätä prosessia kuten ympäristöään ylipäätään. Tässä blogikirjoituksessa keskityn lukemisen datafikaatioon ja miten ihmiset sitä ymmärtävät.

Julkaisimme hiljattain Airi Lampisen kanssa artikkelin, jota varten haastattelin jo suljetun uutissuosittelujärjestelmä Scoopinionin käyttäjiä ja pääkehittäjää. Scoopinion oli Suomessa kehitetty uutissuosittelujärjestelmä, joka seurasi käyttäjien lukuaikaa eri uutisartikkeleissa. Se suositteli käyttäjille heitä tältä pohjalta mahdollisesti kiinnostavia artikkeleita. Scoopinionia voidaan siis pitää yhtenä esimerkkinä datafikaatiosta.

Uskottavuus ja data

Haastatteluissa nousi esiin uskottavuus: koska Scoopinion keskittyi lukuajan mittaamiseen eikä perinteisempään klikkipohjaiseen analytiikkaan, kokivat haastateltavat sen antamat suositukset luotettavammiksi. Tämä luotettavuus syntyi ajatuksesta, että lukuaika on pelkkää klikkausta parempi todiste siitä, että datan lähde on pitänyt artikkelia kiinnostavana. Lukuajan ajateltiin siis edustavan paremmin lukijan arviota artikkelista. Tämä tapa kehystää lukuaika oli toki myös se tapa, jolla järjestelmän kehittäjät pyrkivät palveluaan markkinoimaan.

Scoopinionin uskottavuus siis rakentui lukemiseen liitettyjen merkitysten varaan, joita kehittäjät käyttivät hyväkseen sekä järjestelmää rakentaessaan että sitä markkinoidessaan. Järjestelmää käyttäneet ihmiset tulkitsivat järjestelmän toimintaa lukemiseen liitettyjen merkitysten kautta. Järjestelmää tehtiin ymmärrettäväksi pohjaten näihin merkityksiin, kuten esimerkiksi siihen, että ihmiset ajattelevina olentoina arvioivat lukemaansa omien mieltymystensä mukaan ja viettävät enemmän aikaa itseään kiinnostavien tekstien parissa kuin sellaisten tekstien, jotka heitä eivät kiinnosta. Toisaalta palvelu myös toi uusia merkityksiä lukemiselle: kun palvelu seurasi lukemista, lukeminen muuttui implisiittiseksi suosittelemiseksi. Tämän seurauksena palvelu, jossa käyttäjillä ei ollut mahdollisuutta nähdä muita käyttäjiä koettiin kuitenkin tietyllä tapaa sosiaalisena.

Algoritmiset palvelut osana laajempaa merkitysjärjestelmää

Myös muissa algoritmisissa palveluissa ymmärrystä rakennetaan niitä edeltävien merkitysten varaan, samalla kuitenkin tuoden niihin jotain erilaista. Facebook-ystävät eivät ehkä tarkoita täsmälleen samaa kuin ihmiset jotka koemme ystäviksemme sen ulkopuolella, mutta palvelu käyttää kuitenkin hyväkseen ystävyyteen liitettyjä merkityksiä. Kun kyydityspalvelu Uber alkoi menestymään, rupesivat monet muut jakamistalouspalvelut markkinoimaan itseään tietyn asian “Uberina”: uusien palveluiden uskottavuutta menestyä rakennettiin Uberin menestyksen päälle. Nämä palvelut nojasivat tällä kehystämisellä Uberiin liitettyihin merkityksiin, joka puolestaan on idealtaan hyvin samankaltainen kuin sitä vanhemmat taksipalvelut. Tässä tapauksessa korostui Uberin lupaus tehdä vanha asia kustannustehokkaammin ja antaa “tavallisille” ihmisille mahdollisuus hyötyä taloudellisesti toiminnasta, joka oli aiemmin nähty pääosin tietyn ammattiryhmän toimialana.

Algoritmisia järjestelmiä sosiaalitieteellisestä näkökulmasta tutkittaessa tulisi huomioida, että usein niiden käyttämää dataa ja siihen liittyviä merkityksiä on hankalaa, ellei mahdotonta, erottaa itse algoritmeista, joita järjestelmät käyttävät. Usein data edustaa palveluissa ihmistä ja tästä datasta tehdään selkoa niiden käsitysten kautta, joita ihmisten toimintaan liitetään palvelun ulkopuolella.

Järjestelmät ovat ihmisten rakentamia ja niitä ruokitaan ihmisten toiminnalla. Ne ovat siis läpeensä sosiaalisia.

Artikkeli julkaistiin ihmisen ja tietokoneen välisen vuorovaikutuksen tutkimukseen keskittyvässä NordiChi-konferenssissa ja sitä tehtiin osana Koneen Säätiön rahoittamaa Algoritmiset järjestelmät, valta ja vuorovaikutus -hanketta.

Artikkelin tiedot:
Haapoja, J., & Lampinen, A. (2018). ‘Datafied’ Reading: Framing behavioral data and algorithmic news recommendations. In NordiCHI 2018: Revisiting the Life Cycle – Proceedings of the 10th Nordic Conference on Human-Computer Interaction (pp. 125-136). DOI: 10.1145/3240167.3240194

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s