Mitä on fiksumpi sosiaalisen median analytiikka?

4601859272_4228421089_z
Kuva: (cc) Matt Wynn

Sosiaalisen median analytiikka pyörii yhä enimmäkseen asiasanahakujen ja niiden seurannan ympärillä. Miten kehittyneemmät tekstianalytiikan menetelmät voivat olla hyödyksi ymmärtämään, mistä keskusteluissa on kyse? Mitä reunaehtoja ja epävarmuuksia suurten lupausten automatiikkaan liittyy?

 

Tekesin rahoittama tutkimushankkeemme Smarter Social Media Analytics päättyi toukokuun lopussa. Tutkimushankkeessa pengoimme yli miljardin viestin sisältävää Futusomen somekeskusteluaineistoa automaattisen analytiikan keinoin ja selvitimme, miten keskusteludata rinnastuu muihin aineistoihin, muun muassa Taloustutkimuksen kyselydataan ja SOK:n tuotteiden myyntilukuihin.

Olemme hankkeen aikana testanneet lukuisia erilaisia ohjatun ja ohjaamattoman koneoppimisen muotoja. Lopputuloksena on syntynyt joitakin toimivia tapoja, mutta on tulut kohdattua myös useampi vesiperä. Mutta nepä vasta ovatkin oppimiskokemuksia! Tässä blogikirjoituksessa tiivistettynä hankkeen päätösseminaarissa pitämäni esitys, jossa koottuja oppejamme hankkeen ajalta.

**

1. Fiksumpi sosiaalisen median analytiikka on ihmisen ja koneen yhteistyötä

Sosiaalisen median analytiikkaan – ja tekoälykeskusteluun laajemminkin – liittyy vahvasti laskennallisuuden rationalisointi ja ns. big data -myytti [1]: mikä tahansa numeroiksi muunnettava tieto, jota voidaan käsitellä algoritmisesti, on automaattisesti luotettavaa ja totta. Näin on varsinkin, jos taustalla on isoja aineistoja eli kaikkien himoitsemaa big dataa.

Todellisuudessa kone on yksinään aika tyhmä, ja automaattinenkin analytiikka vaatii yleensä algoritmin opettamista ja yhteistyötä ihmisen kanssa. Opettaminen tapahtuu esimerkiksi luokittelemalla useita satoja tai tuhansia esimerkkiviestejä halutun kysymyksen mukaisesti. Projektissa esimerkiksi koulutimme algoritmia tunnistamaan ydinvoimaan myönteisesti tai kielteisesti suhtautuvia viestejä. Tehtävä ei ole helppo, sillä ihmisten kannat ovat monipolvisia: “Ydinvoima on OK, mutta Rosatom ei.”

Matemaatikko ja data scientist Cathy O’Neil muistuttaa kirjassaan ja Ted Talk -puheenvuorossaan algoritmien vinoutumisesta: algoritmit automatisoivat status quo -tilaa, sillä ne rakentuvat aina historiallisen datan ja sen rakenteen päälle. Maailma ei ole täydellinen, ja sen epätäydellisyys heijastuu myös koneoppimiseen ja tekoälyyn. Siksi rinnalle tarvitaan ihmisajattelua arvioimaan algoritmien oikeellisuutta ja vaikutuksia.

2. Fiksumpi someanalytiikka vaatii mietittyä datan esikäsittelyä

Automaattiseen tekstianalytiikkaan piiloutuu paljon valintoja. Niiden tekeminen alkaa jo aineiston rajauksesta: harvoin on laskentaresursseja tutkija kaikkea saatavilla olevaa dataa, joten se pitää ensimmäiseksi rajata tietyillä hakusanoilla. Millä sanoilla saadaan esimerkiksi haaviin “koko” ydinvoimakeskustelu? Jokaisessa viestissä ei välttämättä mainita ydinvoima-sanaa, vaan tärkeitä avainsanoja voivat olla esimerkiksi voimaloiden sijaintipaikat. Hakusanojen kehittely vaatii usein sekin ihmisasiantuntijan aivoja.

Oleellista on myös ymmärtää käytössä olevan datan mahdolliset rajoitukset ja niiden vaikutukset analyysiin. Esimerkiksi tutkimuskäyttöön luovutettu Suomi24-aineisto on periaatteessa koko aineisto, mutta tietokantavirheen vuoksi aineistosta puuttuu paljon viestejä vuosilta 2004-2005. Tällainen kuoppa näkyy jokaisessa aineistosta piirrettävässä aikajanassa, ja sitä tuijottaessaan tutkija tulee helposti tehneeksi virheellisiä tulkintoja keskusteluaiheen katoamisesta ellei aineiston koostumus ole tiedossa.

Analyysialgoritmit vaativat usein myös aineiston esikäsittelyä. Suomen kielen kohdalla se tarkoittaa esimerkiksi aineiston perusmuotoistamista, joka vie aikaa ja resursseja. Lisäksi tekstimassasta poistetaan tyypillisesti yleisimmät, merkityksettömät sanat eli ns. stopwordit. Niiden poistaminen on kuitenkin samalla myös valinta siitä, mikä on merkityksellistä ja mikä ei. Kiveen hakattuja ohjeita tai yleisesti hyväksyttyä listaa ei kuitenkaan ole olemassa, vaan ratkaisuja tehdään tapauskohtaisesti. Tiedossa on, että  poistettujen sanojen lista vaikuttaa lopulliseen analyysiin, mutta on epäselvää millä tavoin.

3. Fiksumpi sosiaalisen median analytiikka tarvitsee ymmärrystä alustoista ja niiden kulttuureista

Laskemisen ja big datan huumassa on helppoa unohtaa laadullisen analyysin ja kulttuurisen ymmärryksen merkitys. Sosiaalisen median keskusteludata on hyvin kontekstuaalista dataa, jonka syntymiseen vaikuttaa paitsi yhteiskunta ympärillä, myös alustan teknologia ja kyseiselle alustalle muodostunut alakulttuuri. Palstoille voi esimerkiksi syntyä oma slangi ja hyvinkin erikoistunutta sanastoa. Suomen kielen käsittelijä ei välttämättä tunnista verkossa syntyviä uussanoja saatika tuttujen sanojen erikoisia käyttötapoja. Esimerkiksi keppihevonen tarkoittaa toisaalla oikeasti keppihevosta, mutta toisaalla tietynlaista poliittista diskurssia.

Lisäksi automaattisen tekstianalytiikan on osoitettu olevan hyvin kontekstiriippuvaista. Erot tulevat ilmi varsin pienissäkin muutoksissa: Yhdysvalloissa senaatin ylähuoneen puheesta koostuvalla aineistolla koulutettu luokittelualgoritmi ei enää toimikaan alahuoneen puhetta analysoitaessa [2]. Vuoden 2005 ruokapuhetta käsittelevä algoritmi ei pärjää tarpeeksi hyvin vuoden 2015 uuden kielen ja sanaston kanssa.

Myös monet teknologian tuottamat artefaktit muodostuvat hankalaksi automaattiselle analytiikalle. Esimerkiksi monella keskustelufoorumilla viestit lähetetään anonyymisti, jolloin kirjoittajana näkyy “Vierailija”. Kuin vierailija vastaa näihin vierailijan viesteihin lainaamalla niitä, syntyy ketjuja, joissa on hämmentävän monta kertaa mainittu sana vierailija. Lopputuloksena esimerkiksi ohjaamaton aihemallinnus erottaa datasta aiheen, jossa puhutaan kovasti vierailijoista. Sen todellinen olemus ei avaudu kuin esimerkkiviestejä lukemalla.

4. Fiksumpi sosiaalisen median analytiikka on vähemmän mustia laatikoita

Viimeinen ja ehkä tärkein fiksumman sosiaalisen median analytiikan väittämä liittyy analyytikan tekemiseen ja palveluiden ostamiseen. Ala rakentuu tällä hetkellä hämmentävän vahvasti erilaisten mustien laatikoiden ympärille; käytössä on teknologioita ja algoritmeja, jotka on hienosti paketoitu tekoälyksi, mutta todellisuudessa niiden takana ovat samat kontekstiin, kieleen ja validiteettiin riippuvat ongelmat kuin yllä mainituissa esimerkeissä. Monet organisaatiot mittaavat esimerkiksi Facebookista suoraan saatavaa engagement-lukua ymmärtämättä täysin, mistä siinä oikeastaan on kysymys. Analytiikkayrityksen kauppaama keskustelun sentimenttiä kuvaava hieno piirakkadiagrammi ostetaan tyytyväisenä kyseenalaistamatta analyysissa käytettyä algoritmia.

Tämä ei tarkoita, että kaikki tehty automaattinen analytiikka olisi automaattisesti virheellistä. Mutta se tarkoittaa sitä, että analytiikan tekijöiltä vaaditaan lisää avoimuutta käytettyjen menetelmien sekä niiden heikkouksien suhteen sekä sitä, että analytiikan ostajat osaavat kysyä tarkentavia kysymyksiä mustan laatikon sisuksista. Kysymys on lopulta kielenkäytöstä: samalla tavalla kuin lääkärin on osattava selventää diagnoosi potilaalle, on datatieteilijän ja analytiikkayrittäjän osattava selittää analyysin kulku kansankielellä asiakkaalleen. Lääkärivertaus on myös sikäli osuva, että sosiaalisen median keskusteludiagnostiikka on sekään harvoin eksaktia tiedettä, pikemminkin konventioita ja estimaatteja. Pelissä on aina mukana epävarmuuselementti, jonka kanssa on vain elettävä.

Tiivistettynä kolmeen ohjenuoraan: mitä on #smartersome?

  1. Älä aliarvioi ihmistulkintaa. Sille on varattava aikaa, jos aineistosta haluaa liiketoimintahyötyjä.
  2. Vietä päivä etnografina. Selvitä oman toimialasi kannalta oleellisimmat areenat ja tavat mitata keskustelua.
  3. Älä osta mustia laatikoita. Kysy ja selvennä, mitä menetelmät tekevät. Kysy niin kauan, kunnes ymmärrät.

 

**
Lähteet:

[1] Desrosières, A. (2001). How Real Are Statistics? Four Posssible Attitudes. Social Research, 68(2), 339–355.
Beer, D. (2017). Envisioning the power of data analytics. Information, Communication & Society, 21(3), 1–15.
Couldry, N. (2014). The Myth of Big Data. In Schäfer, M. T., & Van Es, K. (Eds.). The datafied society : studying culture through data. Amsterdam: Amsterdam University Press. Retrieved from http://oapen.org/search?identifier=624771
[2] Yu, B., Kaufmann, S., & Diermeier, D. (2008). Classifying Party Affiliation from Political Speech. Journal of Information Technology & Politics, 5(1), 33–48. 

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s