Mitä on fiksumpi sosiaalisen median analytiikka?

4601859272_4228421089_z
Kuva: (cc) Matt Wynn

Sosiaalisen median analytiikka pyörii yhä enimmäkseen asiasanahakujen ja niiden seurannan ympärillä. Miten kehittyneemmät tekstianalytiikan menetelmät voivat olla hyödyksi ymmärtämään, mistä keskusteluissa on kyse? Mitä reunaehtoja ja epävarmuuksia suurten lupausten automatiikkaan liittyy?

 

Tekesin rahoittama tutkimushankkeemme Smarter Social Media Analytics päättyi toukokuun lopussa. Tutkimushankkeessa pengoimme yli miljardin viestin sisältävää Futusomen somekeskusteluaineistoa automaattisen analytiikan keinoin ja selvitimme, miten keskusteludata rinnastuu muihin aineistoihin, muun muassa Taloustutkimuksen kyselydataan ja SOK:n tuotteiden myyntilukuihin.

Olemme hankkeen aikana testanneet lukuisia erilaisia ohjatun ja ohjaamattoman koneoppimisen muotoja. Lopputuloksena on syntynyt joitakin toimivia tapoja, mutta on tulut kohdattua myös useampi vesiperä. Mutta nepä vasta ovatkin oppimiskokemuksia! Tässä blogikirjoituksessa tiivistettynä hankkeen päätösseminaarissa pitämäni esitys, jossa koottuja oppejamme hankkeen ajalta.

**

1. Fiksumpi sosiaalisen median analytiikka on ihmisen ja koneen yhteistyötä

Sosiaalisen median analytiikkaan – ja tekoälykeskusteluun laajemminkin – liittyy vahvasti laskennallisuuden rationalisointi ja ns. big data -myytti [1]: mikä tahansa numeroiksi muunnettava tieto, jota voidaan käsitellä algoritmisesti, on automaattisesti luotettavaa ja totta. Näin on varsinkin, jos taustalla on isoja aineistoja eli kaikkien himoitsemaa big dataa.

Todellisuudessa kone on yksinään aika tyhmä, ja automaattinenkin analytiikka vaatii yleensä algoritmin opettamista ja yhteistyötä ihmisen kanssa. Opettaminen tapahtuu esimerkiksi luokittelemalla useita satoja tai tuhansia esimerkkiviestejä halutun kysymyksen mukaisesti. Projektissa esimerkiksi koulutimme algoritmia tunnistamaan ydinvoimaan myönteisesti tai kielteisesti suhtautuvia viestejä. Tehtävä ei ole helppo, sillä ihmisten kannat ovat monipolvisia: “Ydinvoima on OK, mutta Rosatom ei.”

Matemaatikko ja data scientist Cathy O’Neil muistuttaa kirjassaan ja Ted Talk -puheenvuorossaan algoritmien vinoutumisesta: algoritmit automatisoivat status quo -tilaa, sillä ne rakentuvat aina historiallisen datan ja sen rakenteen päälle. Maailma ei ole täydellinen, ja sen epätäydellisyys heijastuu myös koneoppimiseen ja tekoälyyn. Siksi rinnalle tarvitaan ihmisajattelua arvioimaan algoritmien oikeellisuutta ja vaikutuksia.

2. Fiksumpi someanalytiikka vaatii mietittyä datan esikäsittelyä

Automaattiseen tekstianalytiikkaan piiloutuu paljon valintoja. Niiden tekeminen alkaa jo aineiston rajauksesta: harvoin on laskentaresursseja tutkija kaikkea saatavilla olevaa dataa, joten se pitää ensimmäiseksi rajata tietyillä hakusanoilla. Millä sanoilla saadaan esimerkiksi haaviin “koko” ydinvoimakeskustelu? Jokaisessa viestissä ei välttämättä mainita ydinvoima-sanaa, vaan tärkeitä avainsanoja voivat olla esimerkiksi voimaloiden sijaintipaikat. Hakusanojen kehittely vaatii usein sekin ihmisasiantuntijan aivoja.

Oleellista on myös ymmärtää käytössä olevan datan mahdolliset rajoitukset ja niiden vaikutukset analyysiin. Esimerkiksi tutkimuskäyttöön luovutettu Suomi24-aineisto on periaatteessa koko aineisto, mutta tietokantavirheen vuoksi aineistosta puuttuu paljon viestejä vuosilta 2004-2005. Tällainen kuoppa näkyy jokaisessa aineistosta piirrettävässä aikajanassa, ja sitä tuijottaessaan tutkija tulee helposti tehneeksi virheellisiä tulkintoja keskusteluaiheen katoamisesta ellei aineiston koostumus ole tiedossa.

Analyysialgoritmit vaativat usein myös aineiston esikäsittelyä. Suomen kielen kohdalla se tarkoittaa esimerkiksi aineiston perusmuotoistamista, joka vie aikaa ja resursseja. Lisäksi tekstimassasta poistetaan tyypillisesti yleisimmät, merkityksettömät sanat eli ns. stopwordit. Niiden poistaminen on kuitenkin samalla myös valinta siitä, mikä on merkityksellistä ja mikä ei. Kiveen hakattuja ohjeita tai yleisesti hyväksyttyä listaa ei kuitenkaan ole olemassa, vaan ratkaisuja tehdään tapauskohtaisesti. Tiedossa on, että  poistettujen sanojen lista vaikuttaa lopulliseen analyysiin, mutta on epäselvää millä tavoin.

3. Fiksumpi sosiaalisen median analytiikka tarvitsee ymmärrystä alustoista ja niiden kulttuureista

Laskemisen ja big datan huumassa on helppoa unohtaa laadullisen analyysin ja kulttuurisen ymmärryksen merkitys. Sosiaalisen median keskusteludata on hyvin kontekstuaalista dataa, jonka syntymiseen vaikuttaa paitsi yhteiskunta ympärillä, myös alustan teknologia ja kyseiselle alustalle muodostunut alakulttuuri. Palstoille voi esimerkiksi syntyä oma slangi ja hyvinkin erikoistunutta sanastoa. Suomen kielen käsittelijä ei välttämättä tunnista verkossa syntyviä uussanoja saatika tuttujen sanojen erikoisia käyttötapoja. Esimerkiksi keppihevonen tarkoittaa toisaalla oikeasti keppihevosta, mutta toisaalla tietynlaista poliittista diskurssia.

Lisäksi automaattisen tekstianalytiikan on osoitettu olevan hyvin kontekstiriippuvaista. Erot tulevat ilmi varsin pienissäkin muutoksissa: Yhdysvalloissa senaatin ylähuoneen puheesta koostuvalla aineistolla koulutettu luokittelualgoritmi ei enää toimikaan alahuoneen puhetta analysoitaessa [2]. Vuoden 2005 ruokapuhetta käsittelevä algoritmi ei pärjää tarpeeksi hyvin vuoden 2015 uuden kielen ja sanaston kanssa.

Myös monet teknologian tuottamat artefaktit muodostuvat hankalaksi automaattiselle analytiikalle. Esimerkiksi monella keskustelufoorumilla viestit lähetetään anonyymisti, jolloin kirjoittajana näkyy “Vierailija”. Kuin vierailija vastaa näihin vierailijan viesteihin lainaamalla niitä, syntyy ketjuja, joissa on hämmentävän monta kertaa mainittu sana vierailija. Lopputuloksena esimerkiksi ohjaamaton aihemallinnus erottaa datasta aiheen, jossa puhutaan kovasti vierailijoista. Sen todellinen olemus ei avaudu kuin esimerkkiviestejä lukemalla.

4. Fiksumpi sosiaalisen median analytiikka on vähemmän mustia laatikoita

Viimeinen ja ehkä tärkein fiksumman sosiaalisen median analytiikan väittämä liittyy analyytikan tekemiseen ja palveluiden ostamiseen. Ala rakentuu tällä hetkellä hämmentävän vahvasti erilaisten mustien laatikoiden ympärille; käytössä on teknologioita ja algoritmeja, jotka on hienosti paketoitu tekoälyksi, mutta todellisuudessa niiden takana ovat samat kontekstiin, kieleen ja validiteettiin riippuvat ongelmat kuin yllä mainituissa esimerkeissä. Monet organisaatiot mittaavat esimerkiksi Facebookista suoraan saatavaa engagement-lukua ymmärtämättä täysin, mistä siinä oikeastaan on kysymys. Analytiikkayrityksen kauppaama keskustelun sentimenttiä kuvaava hieno piirakkadiagrammi ostetaan tyytyväisenä kyseenalaistamatta analyysissa käytettyä algoritmia.

Tämä ei tarkoita, että kaikki tehty automaattinen analytiikka olisi automaattisesti virheellistä. Mutta se tarkoittaa sitä, että analytiikan tekijöiltä vaaditaan lisää avoimuutta käytettyjen menetelmien sekä niiden heikkouksien suhteen sekä sitä, että analytiikan ostajat osaavat kysyä tarkentavia kysymyksiä mustan laatikon sisuksista. Kysymys on lopulta kielenkäytöstä: samalla tavalla kuin lääkärin on osattava selventää diagnoosi potilaalle, on datatieteilijän ja analytiikkayrittäjän osattava selittää analyysin kulku kansankielellä asiakkaalleen. Lääkärivertaus on myös sikäli osuva, että sosiaalisen median keskusteludiagnostiikka on sekään harvoin eksaktia tiedettä, pikemminkin konventioita ja estimaatteja. Pelissä on aina mukana epävarmuuselementti, jonka kanssa on vain elettävä.

Tiivistettynä kolmeen ohjenuoraan: mitä on #smartersome?

  1. Älä aliarvioi ihmistulkintaa. Sille on varattava aikaa, jos aineistosta haluaa liiketoimintahyötyjä.
  2. Vietä päivä etnografina. Selvitä oman toimialasi kannalta oleellisimmat areenat ja tavat mitata keskustelua.
  3. Älä osta mustia laatikoita. Kysy ja selvennä, mitä menetelmät tekevät. Kysy niin kauan, kunnes ymmärrät.

 

**
Lähteet:

[1] Desrosières, A. (2001). How Real Are Statistics? Four Posssible Attitudes. Social Research, 68(2), 339–355.
Beer, D. (2017). Envisioning the power of data analytics. Information, Communication & Society, 21(3), 1–15.
Couldry, N. (2014). The Myth of Big Data. In Schäfer, M. T., & Van Es, K. (Eds.). The datafied society : studying culture through data. Amsterdam: Amsterdam University Press. Retrieved from http://oapen.org/search?identifier=624771
[2] Yu, B., Kaufmann, S., & Diermeier, D. (2008). Classifying Party Affiliation from Political Speech. Journal of Information Technology & Politics, 5(1), 33–48. 

Algorithmic Systems, Strategic Interaction, and Bureaucracy

What do algorithmic systems and bureaucracy have in common?

I gave on algorithmic systems, strategic interaction, and bureaucracy in the Making Sense of Algorithmic Systems symposium at the Annual Social Psychology Conference in Helsinki on November 18, 2017. The talk lays out early ideas in a domain that is (relatively) new for me. These have been developed in collaboration with Matti Nelimarkka, Jesse Haapoja, Juho Pääkkönen & others – but all mistakes are mine.

To accompany the slides above, here are the key ideas from the talk:

What might post-interaction HCI (Human–Computer Interaction) look like? This is a conceptual shift we are grappling with and trying to make sense of – focusing on direct and observable interaction between one individual and one device feels less and less sufficient (although those interactions, too, remain important). Inspired by Alex Taylor’s thoughts, I like to think of city bike systems as one example that pushes us to think about socio-technical systems and data in new ways.

The more we talk about algorithmic systems, the more we need to ask ourselves to be precise about how exactly they are different from socio-technical systems more broadly. Algorithms, data, artificial intelligence and machine learning are words I’ve heard awfully often this year — and there are problems with how they are used in public (and academic) conversations. There is lots of fear-mongering as well as moments when systems are narrated to hold more power and capabilities than they actually have etc.

One things that seems to be clear is that all things digital and the datafication of everything is attracting a lot of attention in a variety of fields – and critical researchers are already on it, too! There has been a proliferation of critical studies of algorithms and data over the past years. This reading list, collected by Nick Seaver and Tarleton Gillespie is one fantastic place to start from if you’d like to get a glimpse of what is going on. Moreover, we need to keep asking questions about what algorithms are and in what way(s) they are interesting. One important observation underlying the shift to talk about algorithmic systems rather than algorithms on their own is the fact that algorithms don’t exist in isolation. On this account, I recommend Algorithms and their Others, written by Paul Dourish.

Another source of inspiration for me has been this popular piece on the similarities between bureaucracy and algorithmic systems: Rule by Nobody. The analogy does not work 1:1, of course, but there is something to it. And this points to where I think social psychology has an opening to step in and speak up: our field has a lot of expertise on social interactions (also strategic ones) and organizations. These are needed in conversations about algorithmic systems.

For theoretical bases to work on algorithmic systems and strategic interaction, I recommend as a less known book by Erving Goffman, Strategic Interaction. It is a microsociological take of game theory! As I see it, there are (at least) two levels worth thinking about here: First, computer-mediated communication, including questions about how does social interaction play out in the context of algorithmic systems and how do individuals and groups use these systems in strategic ways in interacting with others? Second, human–computer interaction, with questions about how individuals and groups ”game the algorithm” and work around systems that are making it hard for them to accomplish their goals. Here, one might think about Uber drivers strategizing with one another (and against the company and its app) to make more money, but also about the kinds of workarounds that have long been observed as part of the ”normal” repertoire of how people make socio-technical systems work. Goffman’s work gives us tools to consider how individuals can interact with algorithmic systems (and with one another in the presence of these systems) in active, purposeful ways, rather than the dopes fooled by black boxes that popular accounts sometimes make us to be! But we need to be careful in considering what we can take from this work, focused on rich interactional settings (face-to-face).

When it comes to algorithmic systems and bureaucracy, Max Weber’s scholarship is one obvious candidate to work with. I, however, am intrigued to revisit Michel Crozier’s work, especially the book The Bureaucractic Phenomenon, as a resource for thinking about interactions with algorithmic systems. Crozier’s work challenges perspectives that overemphasize the rational organizational structure of bureaucracy, and places emphasis on the strategic efforts of different stakeholders within these organizational systems. Looking at algorithmic systems from this point of view allows for analysing strategic interactions on the system level in a manner that does not do away with the impact of networked systems but also keeps us focused on the possible tensions between the different human actors. Here, too, we need to be careful in applying old tricks to a new show, since as Minna Ruckenstein pointed out in the symposium, the rules in bureaucracies are typically public knowledge whereas this tends not to be the case with proprietary algorithms.

(Finally, while this talk deals with another domain, most of my recent research deals with the so-called sharing economy. If you’d like to hear more, I’d be happy to hear from you. For my academic papers, take a look at my Scholar profile.)

 

Algoritminen julkisuus on vinoutunutta kyborgijulkisuutta

2453788025_fd51aeb4d9_z
(cc) runran @Flickr

Teknologia nähdään helposti neutraalina tiedonvälittäjänä. Moni viestinnän ammattilainen ei tiedä, miten teknologia toimii tai miten sen kanssa pitäisi toimia. Meidän pitäisi kuitenkin olla yhä tietoisempia siitä, miten esimerkiksi algoritmit meitä  tulevaisuudessakin ohjaavat.

“Software is, in other words, a part of a ‘technological unconscious’ (Clough, 2000), a means of sustaining presence which we cannot access but which clearly has effects, a technical substrate of unconscious meaning and activity.” (Thrift, 2005)

Maantieteilijä-sosiologi Sir Nigel Trift on käyttänyt teknologisen tiedostamattoman käsittettä kuvaamaan teknologian ja ohjelmistojen vaikutusta eräänlaisena sosiaalisen elämän kehikkona, joka tiedostomattomasti vaikuttaa toimintaamme.

Viestinnän ja julkisuuden näkökulmasta teknologisen tiedostamattoman käsite kuvaa kahta asiaa: Ensinnäkin niitä informaatioteknologian tuntemattomia ominaisuuksia ja tapoja, jotka muokkaavat arkea ja erityisesti media-arkeamme, mutta joista emme useinkaan ole kovin tietoisia. Toisaalta käsite muistuttaa siitä, että monella viestinnän ammattilaisella ei ole tarpeeksi tietoa siitä miten teknologia lopulta toimii tai miten sen kanssa pitäisi toimia.

Teknologinen tiedostamaton määrittelee monella tapaa sitä, miten julkisuus muotoutuu. Keskeisin tämän hetken julkisuuden rakennuspalikka on newsfeed, uutisvirta, joka eri palveluissa jäsentää verkon sisältöjä pyrkien maksimoimaan huomion ja palvelussa vietetyn ajan. Käytännössä tämä tapahtuu erilaisten algoritmien avulla: pienet tietokoneohjelmat tai laskukaavat ohjaavat sisällön esittämistä aiempaan käyttäytymiseemme perustuen.

Huolestuttavaa on, että teknologia nähdään neutraalina tiedonvälittäjänä. Vuoden 2017 Edelman Trust Barometerissä vastaajat arvioivat hakukoneet kaikkein luotettavimmaksi tiedonlähteeksi. Perinteisen median luottamus puolestaan on romahtanut. Teknologia vaikuttaa puolueettomalta ja virheettömältä toimijalta samalla kun perinteinen media nähdään eliitin käsikassarana.

Algoritmit ovat kuitenkin tasan yhtä hyviä kuin mekin. Ihmisten toimintatavat, vinoumat ja virhekäsitykset siirtyvät suoraan niihin joko ohjelmoinnin tai koneoppimisen kautta. Hakukone suoltaa sisältöä, josta se arvelee etsijän pitävän aiemman verkkokäyttäytymisen perusteella. Teknologia tuottaa kaikukammioita, koska ihmiset ovat sosiaalisessa toiminnassa tyypillisesti mieluten oman viiteryhmänsä kanssa. Työnhakualgoritmi syrjii tummaihoisia. Microsoftin tekoälybotti jouduttiin ottamaan pois linjoilta, kun se oppi päivässä suoltamaan rasistista vihapuhetta Twitterin elämänkoulussa.

Sisältöjen kohdentamisessa ja teknologiajättien bisnesmallina vinotkin algoritmit kuitenkin toimivat hyvin. Facebook tahkoaa rahaa 6,4 miljardin dollarin liikevaihdolla. Käyttäjämäärät suosituissa sosiaalisen median palveluissa jatkavat kasvuaan, ja alustat tuottavat uusia toimintamuotoja, joilla pyritään maksimoimaan niissä vietetty aika. Julkisuuden ja demokratian kannalta kuitenkin ongelmallista on, että algoritmi ei osaa tehdä eroa eri sisältöjen välillä. Se tarjoilee samalla logiikalla kenkiä, lääkkeitä ja politiikkaa. Syyskuussa 2017 Facebookissa pystyi esimerkiksi kohdentamaan mainoksia suoraan juutalaisvihaajille.

Rahalla siis saa. Bisneslogiikan nimissä samaan aikaan mediayhtiöt ovat huomanneet, että Facebookin algoritmi näyttää entistä vähemmän mediatalojen postauksia niiden seuraajille. Sen sijaan se painottaa sosiaalisuutta ja engagementtia: newsfeedissä näkyy todennäköisimmin sisältöjä, joita kaverisi ovat jakaneet, tykänneet tai kommentoineet. Faktoilla ei tässä pelissä ole arvoa. Sen sijaan tunteilla ja epärehellisyydellä on.

Tämä logiikka on voimalain logiikkaa (Matthew effect). Mikä tahansa tahmainen, ihastuttava tai vihastuttava sisältö päätyy todennäköisemmin näytetyksi, ja sisällön suosio kasvaa entisestään. Siksi julkisuudestamme muodostuu väistämättä tunnejulkisuus, joka etenee kohusta toiseen. Teknologinen tiedostamaton on siis lopulta hybridiä ihmisyyttä, julkisuuden muodostumista kyborgitoimijoiden kautta.

Viestinnän ammattilaisen näkökulmasta huolestuttavaa on se, että teknologian edistämä logiikka hiipii myös niihin tapoihin, joilla viestintää tehdään ja mittareihin, joilla sitä mitataan. Klikkien tuijottamisesta on kenties päästy piirun verran eteenpäin, mutta nyt uusi mittari, jota kaikki maanisesti tuijottavat on sisällön aikaansaama sitoutuminen, engagament.

Se on muuten Facebookin kaupallista menestymistä varten tehty mittari.

Mitäpä jos pakasta napatun mittarin sijasta viestinnän ammattilaiset itse rohkeasti määrittelisivät, mitä on hyvä viestintä, mitä on vaikuttavuus ja miten sitä halutaan mitata?

– –
Salla-Maaria Laaksonen (VTT) on viestinnän ja teknologian tutkija Viestinnän Tutkimuskeskus CRC:ssa ja Kuluttajatutkimuskeskuksella.

Blogikirjoitus on rinnakkaispostaus Viesti ry:n blogista. ja perustuu HY+:n ja Viesti ry:n Viestinnän tulevaisuus -tilaisuudessa 26.9.2017 pidettyyn puheenvuoroon.

Kestävämpiä digitalisia ratkaisuja verkostoitumiseen ja yhteistyökumppanien valintaan?

Rajapinta.co:n kuukausitapaaminen Tampereella 29.9. vahvisti heikkoja siteitä paikallisiin tutkijoihin. Poimintana tapaamisesta, seuraavassa tiivistelmä järjestäjien tutkimusagendasta, joka paitsi sijoittuu teknologian ja yhteiskunnan rajapintaan myös demonstroi usean tieteenalan mielenkiintoista yhteistyötä. Agenda liittyy Thomas Olssonin (ihminen-teknologia vuorovaikutus), Jukka Huhtamäen (verkostoanalytiikka ja datatiede) ja Hannu Kärkkäisen (tietotyö ja arvonluonti) COBWEB-akatemiahankkeeseen sekä Big Match Tekes-hankkeeseen.

Ihmisten välistä sosiaalista sovittamista (engl. social matching tai matchmaking) tapahtuu työelämässä mm. rekrytointiprosesseissa, tiimien muodostamisessa ja verkostoitumisessa. Sopivan henkilön, yhteistyökumppanin tai tiimin tunnistaminen ja valinta vievät paljon aikaa ja intuitiiviset “mätsäämisen” käytännöt ovat alttiita inhimillisille vinoumille. Esim. verkostointitapahtumissa on yleistä, että samankaltaiset ihmiset vetävät puoleensa toisiaan; tällainen homofilia on kuitenkin tietotyön tuottavuudelle vahingollista. Uskomme, että rohkaisemalla ihmisiä kohtaamaan erilaisista taustoista tulevia, eri yhteisöjen jäseniä voidaan edistää tietotyössä olennaista ideoiden ristiinpölyttymistä ja moninäkökulmaista, verkottunutta arvonluontia.

Tavoitteenamme on suunnitella ja toteuttaa sosiaaliseen massadataan, verkostoanalytiikkaan ja koneoppimiseen perustuvaa tietoteknologiaa, joka mahdollistaa digitaalisia tapoja sovittaa, ryhmäyttää ja törmäyttää ihmisiä työelämässä. “Työelämän Tinder” on mainio vertauskuva, mutta parinvalinnan periaatteet ovat työelämässä aivan erilaiset kuin yksityiselämässä. Tutkimuksemme peruslähtökohta on, että datapohjaisilla tavoilla voidaan tunnistaa otollisia, toisiaan sopivasti täydentäviä osaajakombinaatioita ja siten tuottaa positiivista sosiaalista serendipiteettiä. Tavoite voisi konkretisoitua esim. diversiteettiä lisäävinä henkilösuosittelujärjestelminä (diversity-enhancing people recommender systems) tai uudenlaisina yhteistyökumppaneiden haku- tai selausjärjestelminä.

Sosiaalinen massadata eli “Big Social Data” (esim. sosiaalisen median sisällöt ja profiilit, portfoliot, verkostot) voivat rikastaa palvelujen kautta syntyvää kuvaa kustakin käyttäjästä. Nykyiset profiilit esim. työnhaussa ovat yleensä käyttäjän itse laatimia ja siksi kovin staattisia ja sisällöltään rajoittuneita. Esim. twiitit voivat kertoa paljon henkilön tämän hetken kiinnostuksen kohteista ja tulevaisuuden visioista, kun taas esim. verkossa olevat ammatilliset julkaisut ja esitykset voivat kertoa henkilön yksityiskohtaisesta osaamisesta. Tunnistamalla relevantteja yhteisiä teemoja ja komplementaarisia osaamisia esim. tapahtuman osallistujien välillä voidaan automaattisesti tunnistaa potentiaalisia pareja, joiden kannattaisi keskustella lisää. Sosiaalisten verkostojen analyysillä voidaan paitsi arvioida henkilöiden keskinäistä suhdetta ja verkoston kokonaisrakennetta myös tunnistaa yhteisiä kontakteja ja ns. heikkoja siteitä (weak ties).

Tarkoituksenamme on lisäksi tarjota positiivinen skenaario sosiaalisen median datan käytölle ja digitalisaatiolle yleensä. Ehkäpä tällaisten kaikkia hyödyttävien palvelujen kehittäminen hälventää ihmisten yksityisyydensuojan menettämisen pelkoa sekä motivoi yrityksiä avaamaan data-aineistojaan laajemmin hyödynnettäviksi?

Uusien palveluiden ideointi ja utopististen tulevaisuuskuvien maalailu on kuitenkin huomattavasti helpompaa kuin niiden toteuttaminen. Data-keskeisiä haasteita ovat mm. sopivan datan saatavuus eri palvelujen ja palveluntarjoajien siiloista, datan keräämisen ja analysoinnin yksityisyyteen liittyvät ja muut eettiset haasteet sekä massadatan kehittymättömät analyysi- ja visualisointimenetelmät. Sovittamisen sosiaalipsykologiset haasteet ovat jopa vielä monimutkaisempia: “sopivan” henkilön tai organisaation tunnistaminen vaatii ymmärrystä mm. sovitettavien tahojen mahdollisista yhteistyötarpeista, ja jokaisella sovittamistilanteella on uniikki tavoite ja erityispiirteitä, jotka pitäisi ottaa huomioon järjestelmän päätöksenteossa. Digitaalisten sisältöjen suosittelujärjestelmistä tuttuja menetelmiä (esim. social filtering) ei siis voida suoraan hyödyntää.

Kokonaisuuteen vaikuttavat myös käyttäjäkokemukselliset erityispiirteet: miten saada käyttäjä luottamaan teknologian tekemiin päätelmiin ja suosituksiin henkilöistä? Miten saada ihmiset delegoimaan osan päätäntävallastaan ja toimijuudestaan teknologialle, varsinkin näin perustavanlaatuisen inhimillisellä sovellusalueella? Miten sinä kokisit sen, että kännykkäsi yhtäkkiä piippaa kertoakseen, että joku tuntematon, mutta algoritmin mielestä todella relevantti tyyppi on tulossa samaan tapahtumaan ja että teidän kannattaisi tavata?

Hajaantukaa – täällä ei ole mitään nähtävää – algoritmikeskustelusta Suomessa (osa 1)

Screenshot 2017-03-15 11.42.35Algoritmit ovat kuuma aihe paitsi julkisessa keskustelussa, myös kansainvälisessä yhteiskuntatieteellisessä kirjallisuudessa. Pelkästään viime vuoden aikana julkaistiin ainakin kolme erikoisnumeroa, missä käsiteltiin algoritmeja ja niiden roolia yhteiskunnassa. Niin akateemisessa keskustelussa, kuin populaareissakin teksteissä on aistittavissa tietynlainen algoritmien musta magia. Algoritmit eivät ole mitään taikaotuksia jotka hallitsevat maailmaa. Algoritmi on Wikipedian ensimmäisen lauseen mukaan

yksityiskohtainen kuvaus tai ohje siitä, miten tehtävä tai prosessi suoritetaan; jota seuraamalla voidaan ratkaista tietty ongelma.

Maailma on siis täynnä digitaalisia ja vähemmän digitaalisia algoritmeja. Silti pääpaino tuntuu olevan digitaalisissa ympäristössä, kuten Kari Haakanan suomenkielisessä pohdinnassa, vaikka siinä taitavasti tuodaan yhteen jopa klassista teknologian tutkimuksen argumenttejä. On totta, että digitaalisuus todella muuttaa monia ympäröiviä tapahtumia ja algoritmit ovat digitaalisuudessa  keskeisessä roolissa. Vastaavia yksityiskohtaisia kuvauksia ja ohjeita ongelman ratkaisuun on kuitenkin  aina ollut olemassa.

Esimerkiksi Kelan viimeaikainen toimeentulotukisotku monine muotoineen herättää varsin paljon kysymyksiä toimeentulotuen laskennassa käytetystä algoritmista. En tiedä onko taustalla tietojärjestelmän sotkut vai muuten prosessisuo, mutta julkisuuteen nostetut esimerkit – kuten tarve myöntää henkilölle sentin toimeentulotuki maksusitoumusten saamiseksi eteenpäin  – kertovat, että ”algoritmi” ei nyt oikeastaan toimi erityisen järkevästi. Ehkä tässä tullaan keskeiseen huomioon, jota jo Jansson & Erlinngsson (2014) havaitsivat jo aiemmasta tutkimuksesta: haasteena digitaalisissa (sekä ei-digitaalisissa) algoritmeissa on sääntöjen joustamattomuus – usein todellinen maailma ei sopeudu tiukkaan algoritmin ajattelemaan muotoon.

Tässä kohtaa ehkä voi huokaista helpotuksesta, algoritmit ovat kuin todella tarkkoja byrokraatteja. Mutta missä sitten piilee digitalisaation suuri mullistus? Miksi algoritmit ovat niin tapetilla yhteiskuntatieteellisessä kirjallisuudessa ja miksi niistä vouhkotaan (juuri nyt) niin paljon?

On toki totta, että digitaalisten palveluiden myötä me kaikki altistumme mahdollisesti uudenlaiselle, näkymättömälle byrokratialle ja vallankäytölle. Uutta ehkä on, että nyt päätöksentekijänä voi olla joku kasvottomalta näyttävä järjestelmä (noh, en tiedä onko se Kela yhtään parempi esimerkki kasvollisesta järjestelmästä). Mutta, kuten useimmiten, kaiken takaa löytyy kuitenkin ihminen. Algoritmi on aina ihmistoimijoiden tuottama väline, joka toteuttaa ihmistoimijoiden suunnitteleman prosessin. Teknologia-alan demografian perusteella tuo ihmistoiija on melko varmasti valkoinen mies, vaikkei tosin keski-ikäinen. Ja tässä nyt ei ole mitään uutta taivaan alla, valitettavasti. Jyllääväthän valkoiset (keski-ikäiset) miehet monessa muussakin yhteiskunnan päätöksenteon koneessa.

Yhteiskuntatieteellinen mielenkiinto algoritmeihin selittyy niiden tuoreudella. Kyseessä on konkreettinen uusi ”esine”, jota mätkiä tutkimusmenetelmillä ja ajatuksilla. Ja tuoreet aiheet usein herättävät tutkijoiden mielenkiintoa, koska ne ovat uusia ja tuoreita. Toki on tutkimukselle myös tarvetta. Kuten Kitchin (2017) huomauttaa, kriittistä tutkimusta algoritmeista on vähän – varsinkin verrattuna kaikkeen muuhun algoritmitutkimukseen esimerkiksi tietojenkäsittelytieteessä ja insinööritieteissä. Pohdinkin siis,

  • Miten julkisessa keskustelussa käytetään sanaa algoritmi ja mitä sillä oikeastaan tarkoitetaan?
  • Miten perinteiset vallankäytön muodot soveltuvat algoritmien kritisoimsieen ja mitä uutta algoritmit tuovat esimerkiksi perinteiseen byrokratian ajatukseen?
  • Voisimmeko silti koettaa olla nostamasta algoritmia kultaiselle jalustalle ja sen sijaan purkaa mitä oikeastaan tarkoitamme sillä?

Postailen kevään aikana enemmän ajatuksiamme tästä aiheesta ja käsittelemme tematiikkaa myös meetupeissamme.